AN ANALYSIS OF PROGRAM BEHAVIOR

by
Tomoo Nakamura
Hajime Kitagawa

Hiroshi Hagiwara

July 7,1976

INSTITUTE

OF |
ELECTRONICS AND INFORMATION SCIENCE

~ UNIVERSITY OF TSUKUBA

EIS-TR-76-3

*
AN ANALYSIS OF PROGRAM BEHAVIOR

* %
Tomoo Nakamura

. . *kk
Hajime Kitagawa

. . . *k k%
Hiroshi Hagiwara

July 7, 1976

Abstract

As computer systems have increased their complexity,
it has become very important to analyze the system
efficiency. In the analysis of computer systems, it is
fairly of use to have the knowledge of dynamic behavior
of programs under execution. This paper is an empirical
study of program behavior. We prepared an address tracer
which recorded the memory reference patterns of programs
and got the traced data for several programs. By using
these data we analyzed some kinds of program behavior:
run length; branch distance; memory demand; stack
distance frequency for typical replacement algorithms
(LRU and OPT); instruction buffering. 1In this paper
we present the results of the measurement and analysis.

*This report is a revised edition of our paper appeared in Journal
of Information Processing Society of Japan,Vol.l15,No.1(1974).
**Institute of Electronics and Information Science, University of
Tsukuba, Niihari-Gun, Ibaraki 300-31, Japan

***Data Processing Center, Kyoto University, Sakyo-ku, Kyoto 606,
Japan

****Department of Information Science, Kyoto University, Sakyo-ku,
Kyoto 606, Japan

I. Introduction

As computer systems have increased their complexity, it has
become very important to evaluate the system performance or.
analyze the system efficiency. In the analysis of computer
. systems, ‘there aré many cases in which it is of use to have the
knowledge of the dynamic behavior of programs under execution.
Typical examples of the cases are the analysis of paged memory - :
systems;x%$%buffer memory-systemsfzg?interleaved~memory:Systems,‘)
and segmentationed memory systems.

The information about program behavior can be obtained by
measuring and analyzing the memory reference patterns of actual -
programs under execution. Then, we prepared an address tracer
which recorded the memory reference patterns-ofguservprograms,
and got the traced data for several programs. By using these
‘data we analyzed some kinds of program behavior: ruh.length; branch
distance; memory demand; .stack distance frequenc;)for typical
replacement algorithms (LRU and OPT); instruction buffering.

In this paper we present the results of the measurement. and

analysis. . .

[1]

II. Address tracing

To measure the dynamic behavior of programs and to make the
input data for memory reference simulation,g) we have prepared the
address tracer by which memory referencing patterns of user
programs during execution can be recorded. The address tracer runs
under the FACOM 230-60 batch operating systems. The tracer is
linkage-edited with the object programs being traced, and only

user program mode instructions of the object program are recorded

during execution.*

The unit of data which is to be sequentially recorded on
magnetic tape consists of,

(1) address of the instruction which references memory or causes
transfer of control (jump or monitor-call), and its instruct-
ion code,

(2) address of the referenced memory (including all the referenced
addresses in the case of indirect addressing),

(3) type of the reference; i.e., load/store as an operand or
instruction fetch.

We selected several FORTRAN programs as the benchmarks and
got the traced data while they were being compiled and being

executed. (See Table 1.)

The moderate slow-down rate of execution time under tracing is
obtained; 50:1 to 80:1. The address tracer is written in FASP

assembler language and its size is about 700 words.

[2]

Table 1

]

€

[

b prog.
trace data compile | comp. |RD3: | f P
/ execute type (kllO-W) (XIO4) Ro o m 0 Xo/ [
Differential
e ation |C | g |x38 | 22 200|130 | 670 | a
RKG E g.é 9 | 47 |[171 [148 | 681 | a2
EIGEN VALUE | C 'sgf gx% 83 | 218 [11.2 | 670 | bl
10x10 E b 14 79 | 310 {105 | 585 | b2
symmetric
matrix C x38 (177 | 217 [11.3 | 670 | cI
Jacobi E | 4 14 | 39 | 258|116 | 626 | c2
Sorting c |% "’é «38 | 3B | 210 |128 | 662 |dI
, = a2
| E |z 8| 9 |40 |223]188 | 589 |d2
B M Simulator E |* 16 |50 | 267 [138 |595 | e2
f : frequency of data refefence by CPU,
PR : frequency of operand fetch / f, 5 *the amount of core memory used
; | | *Ey the overlayed program
| Py frequency of operand store / f, Tracing was stopped when
PX : frequency of instruction fetch / f, f= 500'090'
Py ¢ frequency of instruction or operand fetch / f,
and PR + PW + PX =1, PF =1 - PW .

ITII. Measurements of program behavior
We made statistical analysis by using the traced data and
characterized the dynamic behavior of programs in the following

points of view.

3.1 Run length

A run length is defined by Sisson and Flynnw as "the number
of addreqséé increasing in‘value by one over the previous address
in an addressing pattern".

We define S as the’distribution of runylengths such that:
S([m,n]) is the probability that s is between m and n (m<{n),
where s is the number of instructions which are executed
sequentially.

Some results of run length distribution are indicated in Fig.l.
Fig.l shows that s is less than about o with high probabili£yxfor

all the measured programs.’

3.2 Branch distance

The branch distance distribution B is defined'as folloﬁsf
B([m,n]) ié the conditional probability that b is between m and n
(m<:n‘), where b is the branch diStance, i.e.,,ag— ayr between
a branch instiuction (address a,) and the next instructidn '
5 when branchfis executed. (b # 0,1)

2
The branch distance distribution as well as the run length

(address a

Adistributipn may indicaté the charac;eriStics of prograﬁ—struCtures
.such aé the size and occurence frequéncy'dfvloops.

Some resﬁlts of branch disﬁance distribution are indicated
in Fig.2. Fig.2 shows that the probability Pr(2L b< 10) is high

for all the measured programs.

[4]

Fig.l Run length

S([m,n]) = Pr(mgs<n)

[m,n]

[1,5] [6,10] [11,15] [16,00]

B([m,n]) Fig.2 Branch distance

R0; [0 ,-10%] .
0.8f Al; [-10%,-10%]
. | e - A2;[-103,-10%]
A3;[-10%,-10]
- Ad4; [=10 ,0]
A5;[2,10]
A6;[10,107
A7;[10%,10%]
- A8;{ 10%,10%]
A9; [10%, &=]

B(im,nl)
=Pr(mghbsn)
/ Pr(b#0A b#I)

[m,n]

A0 Al ‘A2 A3 A4 A5 A6 A7 A8 A9

[51

In Fig.2, the proportions of the number of branch instructions
executed to the total dynamic instruction steps are as follows:

a2 : 28.8%,

b2 :+ 32.6%,
d2 : 14.2%,
e2 : 14.2%.

3.3 Memory demand

We define the amount of memory demand D as follows:
D(r;m) is the average number of distinct blocks that are required
by r successive memory references during execution of a program,
where the memory space is divided into blocks each consisting of
m contiguous addresses.

D(r;m) corresponds to the average working set sizg)of each

2)

program, and r corresponds to the window size.” D(r;m) is
monotonically nondecreasing in r.

Fig.3 shows the results of the case where m = 8§ and r = 1 ~
15000. In the case of a2, b2 or e2, D(r;m) goes up sharply to the
- 'saturation points'. However, in the case of ¢I1 (one of typical
patterns in compilation phase), D(r;m) does not become 'saturated'
while r < 15000. As far as the data shown in Fig.3, the amount
of memory required by 156000 references are less than 2000words

for all the programs and especially less than 1000 words for b2,

e2 and d2.

[6]

D(r;m) Fig.3 Memory demand
250 T
cl
(2000) m= 8
200 7 = — - — — ——.———-.———.;__‘___.___.___.'a2
L /.
/
7
150 - 7/
°
/
(1000) |- /
/
100 ; b2
/ e - —e-——0 g2
- ——O———@——® 4 b e
e “e ——0-——@———e———0"~"¢ - 42
s /f' —e-
50 ,’/
/
blocks |,/
(words) y
O 1 [l L 1 1 1 1 1 1 1 1 I L L »
1 2 4 5 6 7 8 9 10 11 12 13 14 15

(x1000)

]

7

[

3.4 LRU stack distance frequency

The LRU (least recently used) stack distance frequency
defined by Mattson et alF) is a measure that indicétes program's
locality of memory reference, and can be used to obtain the access
rates to buffer memory or main memory in the simulation of buffef
memory systems or paged memory systems.

We define R(j;m) as the cumulative diétribution of.LRU stack.
distance frequency such that:
R(ji;m) is the cumulative distribution of the relative frequency
that the address of memory referenced is contained in the j§ "most
recently used" distinct blocks if the memory is divided into blocks
of m contiguous addresses. J

Some results are shown in Fig.4(a)nu4(ff. In Fig.4(a) and
4(b), the separate curves represent different block sizes. On the
other hand, in Fig.4(c)~(4(e), the separate curves represent
different traced data. It is remarkable that the rapid ascent is
observed by increasin§ Jg from I to 2 in ény casé. This is explained
by the fact that memory feference strings consist of the two
streams; i.e., the instruction stream and thefoperand (data)
stream.

Fig.4(c), 4(d) or 4(e) directly leadé to the variation in
the percentage of accesses to buffer memofy (block size m) with
buffer memory capacity ﬁ>&j in the simulation of buffer'mémory
system which is controlled by fully associative mapping and LRU
replacement algorithm. From these figures, one can see that the
access rates to buffer memory made up of 2 blocks of 4 word-block

is about 50 %, and that the difference of the access rates among

[8]

Fig.4 LRU stack distance frequency

R(gim) (a)
l . 0 X/i—’_ 9 "3
§é§;//”§:‘; — T x———:—:_i‘
0.9 7,((/7‘/;2/%-’—" ORI
m x/*/x,,x/"”’""’
a X v X —x
0.8 x/x/ X/X/
10247 //[/ % / /x—-"’“
0.7F) */X
512X / '
0.6} 256a% X
128-%
0.5r1
0.4r
643y
32
0.3r 16"?(j al
0.2} Che
S~
I 1 A 1 1 | ! : 1 .]
1 2 3 4 5 6 7 9 10
R (J ;m) (b)
1.0
0.9r
0.8F
0.7F
0.6
0.5F
0.4 r
0.3F
0.2
0.1r1
] 1 1 (1 1 1 1 1 3 1

(c)

. K
yall

lOs references

T T Y T T T T ! ' j

1 2 4 8 16 32 64 128 256

105 references

=
N
1=
o

16 32 64 128
[10]

1.0 - P e i —%
m = 16 a2 o/.
@
0.9 <
0.8 A1 2
¢ d1
0.7 - ad
b2
0.6 7
0.5
0.4
0.3 1 105, references
0.2 1
0.11
) T T 4 ! ! i ' j
1 2 4 8 16 32 64 128
R(jim)
(£)
1.0 3%
m 8
’_‘
0.9 - '76
«—° °
— /
0.8 o /0
0.7 - 0 combined stream for ¢2
. //‘\M instruction stream for g2
0 /,‘ operand stream for q2
0.5 : ’ ‘ |
0.4 - comparison of the three streams
X
0.3 a2
0.2 - o ’ 105 references
0.1 7
T v T ¥ 3) L] T j

1 2 4 8 16 32 64 128

[11 1]

the measured programs is unexpectedly small at m X j = 8, 16 and
32. It is also seen thét there is no great difference in the
effects of various buffer memory structures at m X j = 32. Fig.4(f)
compares the characteristics of the three aifferent streams for a?2;
i.e., instruction stream, operand stream, and combined stream. 1In
this example, R(j;m) of the instruction stream is above that of
the operand stream while j £ 32, and R(j;m) of the operand stream
crosses over that of the instruction stream between j = 64 and

Jg = 128.

3.5 OPT stack distance frequency

OPT stack distance frequency is the stack distance frequency
by an optimum page (block) replacement algorithm called OPT.”
OPT replacement algorithm is not realizable in an actual computer
system, but is a useful benchmark for the evaluation of any other
replacement algorithm.

We denbte Ro(j;m) to be the cumulative distribution of OPT
stack distance frequency as the function of the number of blocks
J and the block size m. |

Some results are shown in Fig.5(a)~5(d). Fig.5(a) and 5(b)
show the variations of Ro(j;8) and Ro(j;16) with j. Fig.5(c)
shows the wvariation of Ro(j;m) with m X j, in which the effects
of biock gize m on Ro(j;m) are also indicated. It is obviously
seen from Fig.5(c) that buffer memory has a good performance while
j =2 4. The effects of using OPT and LRU algorithm are compared

in Fig.5(d). Some difference appears at j = 4 and j = 8, but is

not so great.

[12]

Fig.5 OPT stack distance frequency

R (j;m)
o]
1.0 — (a) n———ﬂ-——ﬂ-—-ﬂ——-g
| om=38. O‘qu——§——<x
0.9 - L ;zé*’/’ \\
0.8 - . \\\\\
‘ dl
0.7 T
d2
0.6 -
0.5 —
0.4 -

. a ‘
0.3 A 10 references
0.2 4
0.1 -

1 2 4 8 16 32 64 128 256

R (j;:m

o (dim) (b)
1.0 ———u——-u———n———n

- oéﬁ""::—-—x
0.9 - m 16 o/
0.7 d1
el

0.6 -

0.5—

0.4

0.34 o 10* references

o

0.2 1

0.1 4

T ¥ L} T T .‘ r— T j
1 2 4 8 16 32 64 128

[13]

(c)

di

104 references

R(j;m),RO(j;m)

1.0—

0.9 4
0.8—'
OPT
0.7 -
0.6 4
0.5 —
0.4
0.3

0.2

0.1

mxg

16 32 64 128 256 512 1024 2048 4096

(a)

OPT and LRU stack distance frequency

di

ya

10" references

~T | — T T T T T

16 32 64 128

[14]

3.6 Effect of instruction buffering

I(m) is defined as the probability that the address of an
instruction to be fetched is found in the block which contains
the just previously executed instruction-word if memory space.is
divided into blocks each consisting of m contiguous addresses.
0(m) is defined as the corresponding probability for operand
streams.

I (m)

It
Il

R(1;m) RO(Z;m) for instruction streams

O(m) = R(1;m)

RO(Z;m) for operand streams

The distributions of I(m) and 0(m) are shown in Fig.6. bThe
variation of R(j;¢) with m (= 4 X j) for the instruction Stream
and operand stream of dI are illustrated in Fig.6 for reference.
From Fig.6 it is seen that the effect of increasing m on»the
access rates is greater than that of increasing the number of
blocks for the instruction stream, but the effect of increasing
the number of blocks is greater than that of increasing m for

the operand stream.

[15]

I(m),0(m) Fig.6 Instruction and operand buffering

1.0 R
0.9 4 / / f }
22 A

. . o
0.8 - ® 0 2
;;;; /977”& ' 1& (7;4) for instruction. stream dI
- R(j;4) for operand stream of d1

0 (m)

5
10 references

4 8 16 32 .64 128

[16]

IV. Concluding remarks

This paper is a companion paper to "‘Simulation of a computer
system wiﬁh buffer memory "’(EIS—TR776—2)??‘ We’ have prepared an
address tracer ﬁo ﬁake the input data’for memory reference simulation.
At the same time, we:have}measuredhthe"dynamic,behavior ef the test
programs in several points of view. In this paper the results
obtained by measurements are presented._,Although‘S and B show
various patterns eccording to the difference of program structure,
R has some similiarities between-programs, It may be seid‘that this
is oﬁe of general characteriétics of memory reference and it keeps
the effectiveness of buffer memory or baging memory stable on varieus
ordinary programs. Some of:the results are aleo the outputs obtained
by the memory reference simu1ation of buffer memory system of the
smaller buffer capacities in comparison with the simulation model
discussed in [8]. From the results one can see that the access-
rates to buffer‘memory are about 50 % if buffer capacity is as small
as 4 (word/bloqk)x 2 (blocks) and that the deviationAof the access-
rates among test programs is.unexpectedly small if the buffer

capacity is small.

Acknowledgment

The authors thank Nobuhiro Hayashi for implementing OPT
simulator, and Masanori Kanazawa and Noriko Iida for their helpful
comments and criticism. This work was supported in part by Project

of Data Processing Center, Kyoto University.

[17 1]

References

1) Brawn,B.S. and Gustavson,F.G. Program behavior in a paging
environment, AFIPS Conference Proceedings, FJCC, Vol.33,
pp.1019-1032, 1968.

2) Denning,P.J. The working set model for program behavior,
Comm. of the ACM, Vol.ll, No.5, pp.323-333, 1968.

3) Freibergs,I.F. The dynamic behavior of programs, AFIPS
ConferencekProceedings, FJCC, Vol.33, pp.l1163-1167, 1968.

4) Joseph,M. An analysis of paging and program behaviour,
Computer Journal, Vol.13, No.l, pp.48-54, 1970.

5) Mattson,R.L., Gecsei,J.,Slutz,D.R. and Traiger,I.L.
Evalﬁation techniques for storagé hierarchies,

IBM Systems Journal, Vol.9, No.2, pp.78-117, 1970.

6) Sisson,S.S. and Flynn,M.J. Addressing patterns and memory
handling algorithms, AFIPS Conference Proceedings, FJCC,
Vol.33, pp.957-967, 1968.

7) Liptay,J.S. Structural aépects of the System/360 Model 85

ITI The cache, IBM Systems Journal, Vol.7, No.l, pp.15-21, 1968.
8) Nakamura,T., Kitagawa,H., Kanazawa,M. and Hagiwara,H.
Simulation of a computer system with buffer memory, EIS-TR-76-2,

University of Tsukuba, 1976.

INSTITUTE OF ELECTRONICS AND INFORMATION SCIENCE
UNIVERSITY OF TSUKUBA
SAKURA-MURA, NITHARI-GUN, IBARAKI JAPAN

REPORT NUMBER

REPORT DOCUMENTATION PAGE TRo76-3

TITLE

An Analysis of Program Behavior

AUTHOR(s)
Tomoo Nakamura (Institute of Electronics and Information
Science, University of Tsukuba)
Hajime Kitagawa (Data Processing Center, Kyoto University)

Hiroshi Hagiwara (Faculity of Engineering, Kyoto University)

REPORT DATE NUMBER OF PAGES
July 7 18
MAIN CATEGORY CR CATEGORIES
Computer Systems ; 6.2
KEY WORDS

memory hierarchy, buffer memory, program behavior

ABSTRACT

As computer systems have increased their complexity,
it has become very important to analyze the system
efficiency. In the analysis of computer systems, it is
fairly of use to have the knowledge of dynamic behavior
of programs under execution. This paper is an empirical
study of program behavior. We prepared an address tracer
which recorded the memory reference patterns of programs
and got the traced data for several programs. By using
these data we analyzed some kinds of program behavior:
run length; branch distance; memory demand; stack
distance frequency for typical replacement algorithms
(LRU and OPT); instruction buffering. In this paper
we present the results of the measurement and analysis.

SUPPLEMENTARY NOTES

