SIMULATION OF A COMPUTER SYSTEM

WITH BUFFER MEMORY

by
Tomoo Nakamura
Hajime = Kitagawa
Masanori Kanazawa

Hiroshi Hagiwara

February 23, 1976

INSTITUTE
, | OF | |
'ELECTRONICS AND INFORMATION SCIENCE

UNIVERSITY OF TSUKUBA

EIS-TR-76-2

*
SIMULATION OF A COMPUTER SYSTEM WITH BUFFER MEMORY

* % . . *kk
Tomoo Nakamura Hajime Kitagawa

. *kk !) . *kkk
Masanori Kanazawa Hiroshi Hagiwara

February 23, 1976

Abstr act

In recent years buffer memory has become more popular in order
to attain high CPU performance in large systems. In the analysis
of the effectiveness of buffer memory in multiprogramming environ-
ments, it is important to take the influence of task-switching
into consideration as well as design parameters of buffer memory.

We have made to evaluate the effectiveness of buffer memory
by means of simulation. In this simulation a multiprogramming
model considering task-switch control is proposed and the patterns
of memory reference taken by tracing are used as input data. This
paper presents the method and results of the simulation in the
analysis of buffer memory.

*This report is a revised edition of our paper appeared in Journal
of Information Processing Society of Japan,Vol.1l5,No.1(1974).
**Institute of Electronics and Information Science,University of
Tsukuba, Niihari-Gun, Ibaraki 300-31, Japan

***Data Processing Center, Kyoto University, Sakyo-Ku, Kyoto 606,
Japan

****Department of Information Science, Kyoto University, Sakyo-Ku,
Kyoto 606, Japan

Introduction

In recent years buffer memory, or cache memory, has become
a popular and indispensable function in order to attain high
CPU-performance in large-scale computer systems.

Buffer mémory is high-speed memory of small capacity that
is used to compensate for the difference in operating speed
between main memory and CPU. It is organized into fixed-size
blocké of information, and automatically keeps the information
most recently used by CPU.

The transfer of blocks between buffer memory and main memory
is controlled by hardware. The effectiveness of buffer memory
depends on such design parameters; the block size of information,
buffer memory capacity, replacement algorithm of blocks and the
block transfer rate. In addition, in multiprogramming environments,
it is important to take the influence of task-switching into
consideration as well as the design parameters.

We have made to evaluate the effectiveness of buffer memory
by simulation. In this simulation a multiprogramming model
considering task-switch control is proposed and the address
patterns of memory reference taken by tracing in an actual
computér system are used as input data. This report presents
the method and results of the simulation in the analysis of

buffer memory.

Adress tracing.

To measure the dynamic behavior of programs and to make the
input data for memory reference simulation, we have prepared the
address tracer by which the data referencing pattern of a user
program during execution can be recorded. The address traéer runs
under the FACOM 230-60 batch operating systems. The trace pfogram
is link-edited with the object program being traced, and only user
program mode instructions are recorded.*

The unit of data which is to be sequentially recorded on magnetic
tape consists of,

(1) address of the instruction which references memory or causes
transfer of control (jump or monitor-call), and its instruction
code, |

(2) address of the reférenced memory (including all the referenced
addresses in the case of indirect addressing), and

(3) type of the reference; i.e. load/store as an operand or
instruction fetch.

We selected several FORTRAN programs as the benchmarks and got
the traced data while they were being compiled and being executed.

(s ee Table 1.)

* The moderate slow-down of execution under tracing is obtained
50:1 to 80:1. The address tracer is written in FASP assembler

language and its size is about 700 words.

[2]

]

€

[

Table 1

ile prog.
trace data complile | comp. |"eod | f = P
[executel tYPE [kilow) X10%) E% AR
Differential
flerental tion C o & [x38] 22 /200 |130 | 670 | af
RKG E_|Z £ 9| 47171 |148 |68 | a2
o
EIGENVALUE | C | & g 3B | 83 |28 [11.2 | 670 | bl
O
10x10 E L 14 | 79 | 310 |105 | 585 | b2
symmetric
matrix C x38 (177 | 217 [11.3 | 670 | cl
Jacobi E A 14 39 | 258|116 | 626 | c2
Sorting c |% '“Eﬁ <38 | 38 | 210 |128 | 662 |dI
E |a& B| 9 |50 | 223|188 |589 |d2
O
B M Simulator E " 16 |50 | 267|138 | 595 | e2

: frequency of
: frequency of
: frequency of
: frequency of

: frequency of

and P_ + P+ P_ =

data reference by CPU,
operand fetch / f,
operand store / f,
instruction fetch / f,

instruction or operand fetch / f,

the amount of core used

* %
Tracing was stopped when

f = 500,000.

Simulation of Buffer Memory System

As a simulation model of memory references we consider a computer
system with,bﬁffer memory (BM) which is controlled by the set-
associative mapping algorithﬁ?‘As shown in Fig. 1, in this model
buffer memory and main memory (MM) are beth divided into blocks
of m words and set-aesociative~alQOrithm maps each group of blocks
in the same column.of MM into the cerresponding column of BM. When
a request for data is made by the CPU, it is determined whether the
requested word is in BMver not. If the word is in BM, it is trans-
mitted to the CPU without accessing MM. If’it is not in BM, a MM-
fetch is initiated and send‘directlyvto the CPU. The CPU must be
delayed while it is obtained‘from MM. When this occurs the entire
block containing the requested Werd is also transferred into BM.
If the corresponding column in BM is already full, an appropriate
block must be replaced. We take the least recently used (LRU)
algorithg)for replacement of blocks. When a word is stored by the
CPU, only MM is updated if the corresponding location is not in BM.
If the location is cufrently contained in BM, we adopt the follow-
ing data storing algorithms; (a) storing the data to MM as well as
to BM concurrently (through-storing) and (b) storing the complete
blocks that have been updated only when they are displaced from BM

(post-storing).

The computer system in this model is a multiprogrammed single-
CPU system. The influence of task-switch control on the effective-
ness of buffer memory is considered in this simulation. In a multi-

programming system, task-switching is usualy caused by the run of

[4]

4)

row
0

k-1

row
0

/
2

column
0

BUFFER MEMORY (BM)

/ 2 n-1
block (Tora O] M)
((
N ——— e
1]
MAIN MEMORY
courmp 7 ; (MM)n—l
block (Mol | (([)
(/
DR
/—vg_.__,//_
Fig. 1

Structure of Buffer Memory and Main Memory.

[51

monitor-task which is initiated by a monitor-call or an interruption.
Then, the monitor-call by TRAP instruction in the traced data -which
mainly requests I/O operation can be used in the simulator as one

of the initiation of a task-switch. As the information on inter-
ruption is not, however, contained in the traced data, we prepare
another simulation parameter; i.e. the average interval of task-
switches (the number of reference ft) caused by interruption.

We have developed the following two kinds of method of simulation
considering the task-switch control:

Method 1 (BM reset method). In multiprogramming environments,
one program is paid attention to; the data of the program in BM
become invalid because of task-switch whenever (a) the CPU has made
the references of ft times to that program, or (k) a TRAP instruction
has been executed in that program before (a) occurs.

This method is considered as the worst case in which all of the
data in BM are displaced by the run of other programs before the
the program gets the CPU again.

Method 2 (program switching method). Multiprograms.running in
the system are processed by CPU in order and a task—switch is
generated whenever (a) the CPU has made the references of ft times
to one program, or (b) a TRAP instruction in that program has been
executed before (a) occurs.

In this method the data in BM may be displaced by the run of other
programs, and when some program gets the CPU again the data in BM
which have not been displaced by others can be used. This method
is considefed the rather good case because the run of monitor-tasks

can be disregarded.

[6]

Finally, we adopt the assumption that the CPU in this model does
not take the advanced control. Therefore we do not consider that
the CPU transmits the blocks from MM to BM in the stage of pre-fetch-
ing an instruction or operands, and that the CPU performs store to

MM and execution of the next instruction concurrently.

The parameters in this simulation are as follows; block size (m
words), number of columns (»n), column size of BM (k blocks),
capacity of BM (¢ = mxnxk words) and average interval between task-
switches (f, references).

c,m,n and k are the design parameters of the BM structure, and
ft is the parameter which is dependent on the system behavior.

We got the following kinds of data on the effectiveness of BM as
the outputs of the simulator while varying the combination of

parameter values using the traced data as the inputs:

PB : frequency of access to BM / f,

Ppp ¢ frequency of operand fetch from BM / f,

PBW : frequency of operand store to BM / f,

PBX : frequency of instruction fetch from BM / f,
(Pg = Ppp * Ppy * Ppy)

PPS : frequency of the case when the block updated on BM‘is
displaced from BM / f,

PBL : frequency of block transfer to BM from MM / f

where

f ' : frequency of memory reference to user programs by the CPU.

[7]

Effectiveness of buffer memory

Results of simulation

We have adopted the following values that can be important
measures on the performance evaluation of the systems with BM:

(1) PB : relative frequency(probability) of access to and from BM,

(2) in the case of through-storing,
relative frequency of memory reference at the

PT = PB - PBW :
speed of the BM access time,

(The effectiveness of BM-~access decreases by operand store.)

(3) in the case of post-storing,
relative frequency of memory reference at the

PP = PB - PPS :
speed of the BM access time,

(The effectiveness of BM-access decreases because of neccesity

for transfer block to MM from BM when the updated block in

BM is displaced by another block. It is assumed that both

transfer times to BM from MM and to MM from BM are equal.)

(4) effective cycle time ratio o ; average BM cycles per a reference,

op = PT + Bx(Py * deBL) : through-storing,

: post-storing,

ap = Pp + Bx((P, - Ppy) + dx(Ppr #+ Ppg))

where B is the cycle time ratio of MM/BM and d is MM cycles

required to transfer a complete block.

Some results are shown in the following figures.

1. Influence of mean task-switch interval upon BM-effectiveness

(comparison between method 1 and method 2) (Fig.2).

2. Variation of BM-effectiveness with block size (Fig.3).

3. Variation of BM-effectiveness with BM capacity (Fig.4).

[81

4. Variation of BM-effectiveness with column size (Fig.5).

5. Variation of BM-effectiveness with BM capacity and column size
(Fig.6).

6. Variation of BM-effectiveness with address pattern (Fig.7).

7. Variation of Effective cycle time ratio o with block size if

the data transfer width (m/d) is constant (Fig.8).

Influence of task-swithing upon BM-effectiveness
The following fact can be said from the results of this simulation.

(1) Fig.2 indicates the variation of P_, (access rate to BM) with

B
the average number of references ftkbetween successive task-switches.
In the case of method 1 the value of PB tends to decrease rapidly

as ft gets small. However, in the case of method 2 the decrease in
the value of PB as ft gets small is slight. The degree of multi-
programming is 2 or 3 in this case. If the degree of multiprogramming
increases the results by method 2 would have the tendency like

those by method 1 because almost all the data of some task are dis-
placed by other tasks before control of CPU returns to the task.

It can be said that the influence of task-switching upon BM-
effectiveness is less than or equal to about 5% of PB if the interval
ft gets greater than several thousands memory references.* One of
the reason is, we suppose, that almost all the blocks required by
a certain program for running are transferred to BM by the first
several thousands memory references after the occurrence of a task-
switch.

Roughly speaking, the average task-switch interval is several

thousands memory references in most acutual operating systems.

[91

-~ 4 Fig.2
— o0—3 —-swi
==°___——°___—————‘cr,—f2 Effect of mean task-switch

interval upon BM-effectiveness

o—/
/}57,/4a’ 1. (al) by method 1
0

9 L/ 2. (a2) by method 1
3. (al,a2) by metod 2
4L | ; L f 4, (al,a2,c2) by method 2
[T T U B A I .)
O 2 4 6 8 1%(10(])%)
m=16 k=4
C=4096
L ===
b2 o 2—’2 B
| @ BF St Fig.3 |
ales s o
a2 ;55 Variation of BM-effect-
al 9 iveness with block size.
9 - — 2
—
//‘ﬁr"
Ax
w | A S
o L e e
HT A i
——0—
Q- ‘%aﬂ 0/ o © [F_l
a2 o = --—tF:qg———-'—dz

A T R B W |
8 6 N o 18 X6

$=5000 C=40%

k=4 n=1024/m

[1 0]

Fig.4

Variation of

r _e--e B
BM-effectiveness

with BM capacity.

0 £
| Fig.5

Variation of

am '
BM-effectiveness
_HK—H—X
with column size.

3
al
ﬁt
] k . . ,
1 2 4_ 8 16 ‘k
m=6 C:2048
17:128Ak

[1 1]

1.)
Fig.6

Variation of BM-effectiveness

0//,a———u
7 %‘é/""'
ao - 22/ with capacity and column size.
2 . I. (a2,b2,e2) by method 2

2. (a2,b2) by method 2
the average of (a2,b2,e2) by method 1

| 3.
L
(1‘) (%) (Z:) (81) (k) 4. the average of (q2,b2) by mrthod 1

1 2 4 8 C
(x10%)

L

m:16 n=64
#=5000
®
/.~~-.\ // g
// \\\ //
/ @
= / .
/Q\ / Fig.7
4 AN
am .__“./, \0---‘ Variation of
BM-effectiveness
.9 /’%* With
/x-_—X\ / \
~.. ~~ ddress pattern.
o >3 // ? D } a
Qi X \\\ /! t?\ fID
3(/ \\ / F
/
//Q"""q ,' ‘\ ‘\ /l ,p Pr
Qr- /d \\ I, \\\ /1
,/’ \ / \\\ II/I
o \ II v ',’
\ \
f \/ v/
8F 0 b
§$t] 1 1 1 1 1 1 1 i
a bl cl dl a2 p2 ¢c2 d2 2
C=4096 k=4 m=8
n=128 £=5000

[12]

X CA02%

Y C:Z)[.8
BF o c=0%
a
1 e
3 -
- X
s Oy §om 50

e2

1 1 1 | 1 |

8 16 R & 1B 6
3=10 d=m/8 £=5000

Fig.8

Effective cycle time ratio vs. block size.

[1 3]

(2) As shown in Fig.3, the values of PB (=5 PP) and PT increase as

block size m increases if BM capacity ¢ is kept constant. It can be
said that this fact is caused by localities of memory references in
the mean task-switch interval because BM is reset by task-switching
in method 1 (in Fig.3 ft = 5,000).Though not shown in this report,

when programs run without task-switces (ft =00), the value of PB

or P, keeps almost constant (P_ = 0.99--0.96) while block size m

T B

increases in the case of 4 kilo-words (kw) BM capacity, and Py or PT

decreases a little as m increases in the case of the smaller BM

capacity.
(3) The effective cycle time ratio O and Op do not alwalys become
smaller by the increase of the access rate PB : they are greatly

influenced by the block transfer time. As shown in Fig.8, the
increase of block size m causes the increase.of O and ap in the
case that the data transfer width between BM and MM is narrow, and
consequently BM-effectiveness decreases. In such a case, it may be
said that the smaller block size (8 or 16) is better in multi-

programming environments.

(4) It is clear that as BM capacity increases the value of PB or PT

increases in multiprogramming environments if the other parameters

are kept constant. However, Fig.4 shows that the value of PB or PT

is saturated at about 4 kw BM capacity even 1if ft is 10,000 references
in the results by method 1. Because the amount of data transferred

to BM between succesive task-switches is less than 2 kw when block
size is 8 words as for the traced data in this simulation. Therefore

it may be expected that in such a large BM capacity as 4 or 8 kw

there is a difference in BM-effectiveness between the results by

method 1 and method 2. Fig.6 shows an example comparing the results

[14]

by the two methods with the same address patterns as input data.

The results by other address patterns would indicate the same tendency.
It can be said that in the case of large BM capacities task—switching
will have a relatively great influence on BM-effectiveness by task-
switching becomes.

(5) The variation of the value of PB with column size k for an

address pattern al while BM capacity is constant is shown in Fig.S5.
When column size k is 1, the value ofvPB is low particularly, and

when k goes greater than 4, it becomes saturated. This means that

2 or 4 is nearly optimal as column size in the set-associative

mapping algorithm in the view of cost/performance evaluation.

Remarks

We have simulated a simple model of a multiprogrammed single-CPU
computer system with buffer memory and studied about the effective-
ness of buffer memory. When the effectiveness of buffer memory in
actual computers is to be evaluated, we shoud take into acount in
the analysis (a) the advanced control by hardware and (b) the task
management under the control of its operating system. If the advanced
control is taken, thouéh not considered in this simulation, pre-trans-
fer of blocks from main memory to buffer memory is performed in the
instruction or operand prefetch stage by the CPU even if the block
may not be used, and the performance of the system may differ from
the results to some extent. Moreover, by the advanced control of
data storing to main memory, it may also be assumed that the

degradation of the effectiveness of buffer memory becomes smaller,

[15]

and in the case of through-storing the deviation of the effective-
ness caused by the different frequency of store-instructions in each
program is less than that of the results. We have analyzed the
effectiveness of buffer memory with multiprogramming environments

in two typical cases, that is; the worst case that tha data in
buffer memory are completely displaced by task-switching and the
rather better casethat the data in buffer memory are replaced by
other user programs while they are running. But in order to analyze
the actual systems in detail the influence of the data in main
memory being updated by I/O operations and of the run of monitor-
tasks or interrupt handling routines will be important factors.
Should the performance of computer systems be evaluated in consider-
ation of these factors, it would be analyzed through simulating in

more detailed model or through monitoring actual computer systems.

This work was supported in part by Project of Data Processing

Center, Kyoto University.

[1 6]

References

1)

2)

3)

4)

5)

6)

7

Liptay,J.S. Structural aspects of the System/360,Model 85

ITI The cache, IBM Systems J.,Vol.7,No.l,pp.15-21,1968.
Conti,C.J. Concepts for buffer storage, IEEE Computer Group
News, Vol.2,No.8,pp.9-13,1969.
Mattson,R.L,Gecsei,J.,Slutz,D.R.and Traiger,I.L. Evaluation
techniques for storage hierarchies, IBM Systems J.,Vol.9,No.2,
pp.78-117,1970.

Katzan, H.Jr. Computer Organization and the System/370, Van

Nostrand Reinhold, 1971.

Sisson,S.S. and Flynn,M.J. Addressing patterns and memory
handling algorithms, Proc. AFIPS 1968 FJCC,Vol.33,pp.957-967.
Meade,R.M. Design approaches for cache memory control, Computer
Design,Vol.10,No.l,pp.87-93,1971.

Nakamura,T., Kitagawa,H. and Hagiwara,H. An analysis of program

behavior, EIS-TR-76-3 (to appeare).

[1 7]

INSTITUTE OF ELECTRONICS AND INFORMATION SCIENCE
UNIVERSITY OF TSUKUBA
SAKURA-MURA, NITHARI-GUN, IBARAKI JAPAN

REPORT NUMBER

REPORT DOCUMENTATION PAGE TR-76-2

TITLE

Simulation of a Computer System with Buffer Memory

AUTHOR(s)

Tomoo Nakamura (Institute of Electronics and Information
Science, University of Tsukuba)
Hajime Kitagawa; Masanori Kanazawa
(Data Processing Center, Kyoto University)

Hiroshi Hagiwara
(Faculity of Engineering, Kyoto University)

REPORT DATE NUMBER OF PAGES
February 23,1976 17

MAIN CATEGORY CR CATEGORIES
Computer Systems 6.20, 8.1, 4.32

KEY WORDS
memory hierarchy, buffer memory, multiprogramming system,

program behavior

ABSTRACT

In recent years buffer memory has become more popular
in order to attain high CPU performance in large systems.
In the analysis of the effectiveness of buffer memory in
multiprogramming environments, it is important to take the
influence of task-switching into consideration as well as
design parameters of buffer memory.

We have made to evaluate the effectiveness of buffer
memory by means of simulation. In this simulation a multi-
programming model considering task-switch control is pro-
posed and the patterns of memory reference taken by tracing
are used as input data. This paper presents the method and
results of the simulation in the analysis of buffer memory.

SUPPLEMENTARY NOTES

