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Abstract

We present a measure that shows the magnitude of Pareto inefficiency, and show how to obtain it under certain
conditions. We prove that the price of anarchy (PoA) presents the magnitude of Pareto inefficiency of the unique Nash
equilibrium in the case where the Nash equilibrium and the social optimum are both symmetric although utilities of
players may be asymmetric in other feasible states. That is, in that case, PoA is identical to the measure. Then we
study the general trend of how the magnitude of Pareto inefficiency depends on the number of non-cooperative players
in Nash equilibria, i.e., on the degree of dispersion in decision making. We examine a symmetric economic game
and a symmetric congestion game for examining the trend. We show, respectively, in the economic and congestion
games, the magnitude of Pareto inefficiency of the Nash and atomic Nash equilibrium (and also PoA therein) can
increase without bound.

Keywords: Pareto inefficiency, atomic and non-atomic Nash equilibrium, oligopoly, monopoly, perfect competi-
tion, congestion game, load balancing, Wardrop equilibrium, social optimum, price of anarchy.

1 Introduction
Decision makers in many systems can be regarded as players in games. Non-cooperative decisions which lead to
Nash equilibria have the advantage of independence and distribution of decision making. Non-cooperative decisions,
however, may not always be beneficial. Nash equilibria may be Pareto inefficient. It looks that the definition of
the magnitude of Pareto inefficiency has not been settled yet. In this article, we present a measure that shows the
magnitude of Pareto inefficiency. Then, we examine how the magnitude of Pareto inefficiency of the Nash equilibrium
depends on the number of non-cooperative players.

The price of anarchy (Koutsoupias and Papadimitriou, 1999) is widely used for evaluating the degree of ineffec-
tiveness of Nash equilibria. If the Nash equilibrium is unique, the price of anarchy, PoA, gives the ratio of the social
cost of the Nash equilibrium to that of the social optimum. In fact, however, it does not seem to have been rigorously
shown that PoA can serve as a measure that shows the magnitude of Pareto inefficiency of Nash equilibria for general
cases. In section 2, we prove that PoA can do so in the case where all players have the same values of utilities in the
unique Nash equilibrium and the social optimum (symmetric, homogeneous), although other feasible system states
may be asymmetric (i.e., the utility of every player in each state may not be identical). We note that there can exist at
most one symmetric Nash equilibrium in each non-cooperative game. In the examples given in section 3, all players
have the same value of utilities in the Nash equilibrium and the social optimum, and then the measure of the magnitude
of Pareto inefficiency gives the same value as the price of anarchy.

The level of dispersion of decision making for systems reflects the number of non-cooperative players. In this
article, we think of various levels of non-cooperative decision making, that is, of various numbers of players in non-
cooperative games. In subsection 1.1, we examine the degrees in the dispersion of decision making or the number of
players in non-cooperative games.

1.1 Different Degrees in the Dispersion of Decision Making

We can think of different degrees in the dispersion of decision making.
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(A)[Completely centralized decision, monopoly]: There is only one decision maker or only one player. The
decision maker seeks to optimize a single social measure such as the overall utility or the total cost over all users
(e.g., the expected sojourn time). If there are multiple users or agents in a system, then the only one decision maker
distributes the optimal benefit or cost among all users or agents. In the literature, the corresponding solution concept
is referred to as a system optimum, overall optimum, cooperative optimum or social optimum. In economics, this
situation is identical to that of monopoly. In this article, we call this optimum social optimum.

(B)[Intermediately dispersed decision, non-cooperative games with atomic players, oligopoly]: There are a
finite number (N(> 1)) of decision makers, agents, or players. Each decision maker optimizes non-cooperatively
his/her own utility or cost (e.g., the expected sojourn time). The decision of a single decision maker has a non-
negligible impact on the performance of other groups. We refer to the situation where each player’s decision has
a non-negligible impact on the system state as “atomic.” The situation where, in such a scheme, every player has
optimized his/her decision, given the decisions of other users, and furthermore, would not unilaterally deviate from
this decision is called a Nash equilibrium. In this optimized situation, each of a finite number of players cannot receive
any further benefit by changing his/her decision. In the literature, the corresponding solution concept is referred to as
a class optimum or Nash equilibrium with atomic players. This situation is identical to that of oligopoly in economics.
We may have different levels in intermediately dispersed optimization according to the size of N. In this article, we
call this equilibrium atomic Nash equilibrium.

(C)[Completely dispersed decision, non-cooperative games with non-atomic players, perfect competition]:
In this situation, the decision of a single decision maker has a negligible, infinitesimal impact on the performance of
the entire system, since, probably, the number of such players is so large. In contrast, the status of the entire system
is determined from the whole decisions made by all players. We refer to the situation as “non-atomic.” Each player
optimizes his/her own utility or cost (e.g., his/her own expected sojourn time), independently and selfishly of the
others. In this optimized situation, each player cannot expect any further benefit by changing his/her own decision.
The situation where every infinitesimal player has optimized his/her decision, given the entire system status, and
would not unilaterally deviate from that choice, is called individual optimum, Wardrop equilibrium, or user optimum
(Wardrop, 1952; Haurie and Marcotte, 1985; Patriksson, 1994) etc.). This situation is identical to that of perfect
competition in economics. In this article, we call this equilibrium non-atomic Nash equilibrium.

Note that (B) is reduced to (A) when the number of players reduces to 1 (N = 1) and approaches (C) when the
number of players increases without bound (N → ∞) (Haurie and Marcotte, 1985). In the cases of (B) and (C), there
are multiple players or independent decision makers and they can be regarded as ‘non-cooperative games.’

1.2 Pareto Superiority and Efficiency
We think that, for each state of the system, the utility (or cost) of each player is determined. We recall the defini-
tion of superiority/inferiority among system states as presented in the following paragraph. The notions of Pareto
superiority/inferiority and optimality/inefficiency have already been established, and we confirm the notions and their
definitions.

[Pareto superiority and inferiority]: We consider a system consisting of a number of users or players n, where n
denotes the set {1, 2, · · · , n}. Denote by S the system state (s1, s2, · · · , sn) where si denotes the decision made by
player i, i ∈ n. Denote by S the set of feasible system states each of which presents a realizable combination of player
decisions. For each state of the system, each player has his/her own utility. Denote a combination of utilities of all
players in a system state S ∈ S by U(S ) = (U1(S ),U2(S ), . . . ,Un(S )). In general, we consider the cases where Ui(S )
has a positive real value, Ui(S ) > 0, for all i ∈ n, S ∈ S.

Consider an arbitrary pair of two (achievable) states of the system, S a, S b, ∈ S. If Ui(S a) ≤ Ui(S b) for all i ∈ n
and U j(S a) < U j(S b) for some j ∈ n, then S a is Pareto inferior to S b and S b is Pareto superior to S a. In the cases
where Ui(S a) = U(S a) and Ui(S b) = U(S b) for all i ∈ n, that is, the resulting utility of every player is identical
(symmetric) within each state, the degree of Pareto inferiority (superiority) between them can simply defined to be, for
example, U(S a)/U(S b). In general (including asymmetric cases), however, the Pareto superiority/inferiority relations
induce partial ordering in the set of system states and is not subject to total ordering or single scalar measure, like the
ratio,

∑
p Up(S a)/

∑
p Up(S b), of the social cost of state S b to that of S b. Therefore, we may rely on more complicated

measures such as follows. A definition of the measure of Pareto superiority/inferiority, respectively, of state S a to S b

has been given as (Kameda, 2009; Kameda, 2013)

P/(S a, S b) , min
p∈n

Up(S a)/Up(S b) and Q/(S a, S b) , min
p∈n

Up(S b)/Up(S a) (1)
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Then, P/(S a, S b) < and ≥ 1, respectively, if S a is Pareto inferior/indifferent and superior to S b. Q/(S a, S b) < and ≥ 1,
respectively, if S a is Pareto superior/indifferent and inferior to S b.

[Pareto optimality and efficiency]: If there exists no system state that is Pareto superior to a system state, the latter
state is called a Pareto optimum or efficient state. If there exists some system state that is Pareto superior to a system
state, the latter state is called a Pareto inefficient state. In general, multiple Pareto-optimal states may exist for a system.
An overall (or social) optimum is evidently Pareto optimum. Non-atomic Nash equilibria (Wardrop equilibria) and
Nash equilibria may be Pareto optimal or inefficient.

2 Magnitudes of the Pareto inefficiency of Nash Equilibria
[The magnitude of Pareto inefficiency]: We consider such a definition of the degree of Pareto inferiority Q(S , S b) of
system state S to S b that satisfies the following: Q(S a, S b) < and ≥ 1, respectively, if S a is Pareto superior/indifferent
and inferior to S b. Q/(S , S b) given in relation (1) is an example of this. Then, naturally, we have the magnitude of
Pareto inefficiency of a system state S a, simply by

MoI(S a) , max
S∈S

Q(S a, S ) (2)

(the larger magnitude for the greater inefficiency). It shows the maximum ratio in which the Pareto inefficient state
can be improved.

Proposition 1 MoI(S ) = 1 if S is Pareto optimal, and MoI(S ) ≥ 1 if S is Pareto inefficient. Thus, MoI(S ) can serve
as a measure of the magnitude of Pareto inefficiency of system state S .

[Proof] If S a is Pareto optimal, then Q(S , S a) < 1 for all S , S a, and Q(S a, S a) = 1, and thus MoI(S a) = 1. If S a is
Pareto inefficient, then Q(S , S a) ≥ 1 for some S , S a, and thus MoI(S a) ≥ 1. �

On the basis of the definition on Pareto inferiority given in relation (1), a definition of the magnitude of Pareto ineffi-
ciency MoI(S a) of a system state S a is given as

max
S∈S

min
p∈n

Up(S )/Up(S a) for the utility base and

max
S∈S

min
p∈n

Cp(S a)/Cp(S ) for the cost base (3)

where Ci(S ) denotes the cost for player i in system state S (Legrand and Touati, 2007).

Define the weighted sum of the utilities of players for state S ∈ S with constant V > 0:

O(U(S ),V) =
∑

p

Up/Vp where V = (V1,V2, · · · ,Vn),Vi > 0, i ∈ n. (4)

Theorem 1 Given a system state S̀ with each player’s utility U(S̀ ) = (Ù1, Ù2, . . . , ÙN), we have the weighted social
optimum U(S̄ ) = (Ū1, Ū2, . . . , ŪN) such that O(U(S̄ ),U(S̀ )) = maxS∈S O(U(S ),U(S̀ )). Assume that we can arrange
such that Ūi/Ùi = Ū/Ù, i ∈ n. The magnitude of Pareto inefficiency, MoI(S̀ ), of S̀ is obtained such that MoI(S̀ ) =
Ū/Ù. In this case, MoI(S̀ ) = 1 and > 1, respectively, if S̀ is Pareto optimal and inefficient. Thus, the magnitude of
Pareto inefficiency, MoI(S̀ ), of S̀ determines the Pareto optimality of state S̀ .

[Proof] Note that O(U((S̄ ),U(S̀ )) = maxS∈S O(U(S ),U(S̀ )), and that we arrange such that Ūi/Ùi = Ū/Ù, i ∈ n.
Consider another state S ′ ∈ S. Since S̄ is the weighted social optimum, then O(U(S ′)) ≤ O(U(S̄ )). Therefore,
there must exist some i (i ∈ n) such that U′i /Ùi ≤ Ūi/Ùi = Ū/Ù. Then, Q(S̀ , S ′) = minp U′p/Ùp ≤ Ū/Ù. Then
MoI(S̀ ) = max[{maxS∈S Q(S̀ , S )}, Ū/Ù] = Ū/Ù. Thus, the magnitude of Pareto inefficiency MoI(S̀ ) of Ù is given by
Ù/Ū. The last two statements are clear from the relation between U(S̀ ) and U(S̄ ). �
As to the existence of such a weighted social optimum Ū that Ũi/Ūi = Ũ/Ū, i ∈ n, for a Nash equilibrium, Ũ, we
refer to the Nash equilibrium based fair allocation (Kameda, Altman, Touti and Legrand, 2012).

Furthermore, we have the following:
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Corollary 1 Assume that we have a Nash equilibrium S̃ with each player’s utility U(S̃ ) = (Ũ1, Ũ2, . . . , ŨN), that is
symmetric, Ũi = Ũ, i ∈ n. Let the social optimum U(S̄ ) = (Ū1, Ū2, . . . , ŪN) such that O(U(S̄ ), 1) = maxS∈S O(U(S ), 1),
where 1 = (1, 1, · · · , 1). Assume that we can arrange such that Ūi = Ū, i ∈ n (the symmetric social optimum). Then,
the magnitude of Pareto inefficiency MoI(S̃ ) of S̃ is obtained such as Ū/Ũ. MoI(S̃ ) = 1 and > 1, respectively, if S̃
is Pareto optimal and inefficient. That is, the magnitude of Pareto inefficiency, MoI(S̃ ), of S̃ determines the Pareto
optimality of state S̀ .

In subsections 3.1 and 3.2, we see examples of social optimum S̄ , that is (arranged to be) symmetric, Ūi = Ū, i ∈ n.
By using the above corollary 1, we have MoI(S̃ ) = Ū/Ũ for the utility base scheme and MoI(S̃ ) = C̃/C̄ for the cost
base scheme.

The price of anarchy, PoA, for the case of unique Nash equilibrium S̃ (the ratio of the social cost of the Nash
equilibrium to that of the social optimum) is PoA ,

∑
p C̃p/

∑
p C̄p. If both of U(S̃ ) and U(S̄ ) are symmetric, then

PoA = C̃/C̄, which is the same as MoI(S̃ ).

Corollary 2 The price of anarchy presents the magnitude of Pareto inefficiency of the unique Nash equilibrium if
the utility of each player is the same (symmetric) within the Nash equilibrium and if that of each player is the same
(symmetric) within the social optimum, although the utilities of feasible states may not necessarily be symmetric.
The price of anarchy and the magnitude of Pareto inefficiency of the unique Nash equilibrium determines the Pareto
optimality of the Nash equilibrium.

Consider the following congestion game: The network consists of an origin, a destination and paths (series of links)
connecting the origin and the destination (simple examples are the Braess and Pigou networks (Braess, 1968; Pigou,
1920). Packets are forwarded from the origin to the destination. The cost for each packet is the sojourn (passage) time
through the origin and the destination. By suitably assigning packets to the atomic and non-atomic players, we can
obtain symmetric costs for players in the unique Nash equilibrium and in the social optimum. Then, we can apply the
above corollary 2, and we see that the price of anarchy presents the magnitude of Pareto inefficiency of the congestion
game. In the examples given in the subsections 3.1 and 3.2, we see the social optimum and the Nash equilibria are
symmetric, and then we can apply the corollary 1 to the examples.

[Pareto inefficiency of atomic and non-atomic Nash equilibria]: It is evident that the social optima are Pareto
optimal. Both atomic and non-atomic Nash equilibria may be Pareto inefficient, as exemplified in the Braess paradox
on transportation and communication networks (Braess, 1968; Murchland, 1970; Frank, 1981; Cohen and Kelly, 1990;
Cohen and Jeffries, 1997; Korilis, Lazar and Orda, 1995; Korilis, Lazar and Orda, 1999; Kameda, 2002; Kameda,
2009)), and in the Braess-like paradox on distributed computer systems (Kameda, Altman, Kozawa and Hosokawa,
2000; Kameda and Pourtallier, 2002), and in the well-known prisoners’ dilemma, etc.

[Atomic Nash equilibria] It has been shown that, if the utility function of each player is twice continuously
differentiable, Nash equilibria are generally Pareto inefficient in smooth games with the finite number of players
(Smale, 1973; Dubey, 1986). In addition, the magnitude of Pareto inefficiency of some atomic Nash equilibria can
increase without bound as seen in the congestion game given in subsection 3.2. Thus, one may think that atomic Nash
equilibria are more likely Pareto inefficient.

[Non-atomic Nash equilibria] In contrast, there have been studies that seek the bounds of the magnitude of Pareto
inefficiency of non-atomic Nash equilibria for congestion games as in (Roughgarden and Tardos, 2004a; Roughgarden
and Tardos, 2004b). Furthermore, we have not seen the cases where the magnitude of Pareto inefficiency of non-atomic
Nash equilibria can increase without bound. Moreover, we note that there exist a class of schemes given in general
economic theory called Walrasian equilibria (under perfect competition) that have been shown to be Pareto optimal
(well known as the first fundamental theorem of welfare economics) (Arrow, 1951; Debreu, 1951). The Walrasian
schemes depend on the pricing mechanism with perfect competition where each of consumers and producers behaves
as a price-taker and can have only infinitesimal effects on the prices by changing his/her decision. These schemes are
regarded as examples of Pareto-optimal non-atomic Nash equilibria.

The above mentioned situations around atomic vs. non-atomic Nash equilibria may bring us such a conjecture
that the magnitudes of Pareto inefficiency in atomic Nash equilibria may, on the whole, be greater than those of non-
atomic Nash equilibria. This conjecture is betrayed as follows. We can see the cases where the magnitudes of Pareto
inefficiency of atomic Nash equilibria, respectively, decreases and increases as the number of player N increases in the
games given in the examples in the subsections 3.1 and 3.2. In addition, we see in the subsection 3.1 that the magnitude
of Pareto inefficiency of non-atomic Nash equilibria for some economic games can increase without bound.
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3 Examples
We present case studies on two games, economic and congestion.

3.1 Monopoly, Oligopoly and Perfect Competition — An Economic Model
Herein we investigates a system consisting of a market and multiple producers that produce a commodity of the
single kind, i.e., a Cournot oligopoly game wherein the players that make decisions are producers. Each producer
optimizes his/her profit in producing the amount of commodity demanded in the market. In this game, consumers are
not regarded as separate players. Their behaviors are reflected in the demand function that determines the price of the
commodity.

3.1.1 The Model and Assumptions

The system considered here consists of n producers and a market. Producers are numbered 1, 2, · · · , n. Denote by n
the set {1, 2, · · · , n}. All producers produce the homogeneous commodity, and in each market, the consumers demand
it. Consider the three cases as to the market.

1) Monopoly: Each producer follows the decision by only one decision maker.

2) Oligopoly: Each producer makes unilaterally his/her own decision. His/her decision may have non-negligible
impact on the price.

3) Perfect competition: Each producer makes decision given the price to which he/she can exercise only in-
finitesimal influence. Each producer behaves as the price-taker, and the price is determined by the total amount
of the commodity demanded and produced.

Let qi (qi ≥ 0) denote the quantity that producer i produces, i ∈ n. Define vector q such that q , (q1, q2, · · · , qn). qi is
the variable determined by producer i. i ∈ n. Then, we assume an inverse demand function such as p = a(1−∑

j q j/b)
(a, b > 0,), where a is the upper bound of the price in the market and b is the upper bound of the demand for the
commodity in the market. For the market, if the price is p, the quantity demanded is given by p = a

(
1 −∑

j q j/b
)
.

Assume that the cost that producer i produces the amount qi of the commodity is cqi. c represents the marginal
cost.

1) Monopoly: The profit Pi
0 of producer i is the following: Pi

0 = a{1 − (
∑

j q j)/b}qi − cqi.

Then the total sum of the profits of producers is P0(q) =
∑

j P j
0 = a(1 − q/b)q − cq, where q =

∑
j q j.

Therefore, the optimal decision by the monopolized producers is expressed as: maxq P0.
Denote by q̄ = (q̄1, q̄2, · · · , q̄n), the set of values of q1, q2, · · · , qn that satisfy P0(q̄) = maxq P0(q).

2) Oligopoly: The above case 2) can be regarded as a game where the producers are players and where the profit of each
producer i is the utility of the player i, i ∈ n. The profit Pi of producer i is the following: Pi = a

(
1 −∑

j q j/b
)

qi − cqi.

Therefore, the optimal decision by producer i is expressed as follows: maxqi Pi.
Denote by q̃ = (q̃1, q̃2, · · · , q̃n) such values of q1, q2, · · · , qn that satisfy, for i ∈ n,

Pi(q̃) = max
qi

Pi(q̃1, · · · , q̃i−1, qi, q̃i+1, · · · , q̃n), given q̃1, · · · , q̃i−1, q̃i+1, · · · , q̃n. (5)

If the system has such a solution q̃ of q that satisfies (5) for all i at the same time, it is an atomic Nash equilibrium.

3) Perfect competition: Denote by Q be
∑

p qp. The profit Pi
0 of producer i is the following: Pi

c = a(1 − Q/b)qi − cqi.

Each producer increases qi as far as a(1 − Q/b) > c, which finally results in Q = Q̂ = b(a − c)/a.
Then, the profit of each producer i is Pi

c(q) = 0.
Denote by q̂ = (q̂1, q̂2, · · · , q̂n), the set of values of q1, q2, · · · , qn that satisfy

∑
p q̂p = Q̂.

Pi
c(q̂) = 0, i ∈ n, which is unique irrespectively of the variety of q̂.

Consider a group of systems for which the values of parameters, a, b and c, satisfy the following constraints:
a ≥ c > 0, b > 0, so that the market can be established.

Denote the set of parameter values that satisfy the above constraints by C.

Producer profit and consumer surplus: Define the following. R̃i = Pi(q̃), R̄i = Pi
0(q̄i) and R̂i = Pi

c(q̂i) = 0.
R̄i, R̃i, and R̂i, respectively, denote the values of the profit for producer i in monopoly, in oligopoly and in perfect
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competition. R̄i = R̄, R̃i = R̃, and R̂i = R̂ because of the symmetry. C̄, C̃ and Ĉ, respectively, denote the values of
the consumer surplus for the market in monopoly, in oligopoly and in perfect competition. kR

i and kC , respectively,
denote the ratios, of the profits for producer i and of the consumer surplus, of monopoly to those of oligopoly. That is,
kR

i = R̄i/R̃i = R̄/R̃ = kR and kC = C̄/C̃.

3.1.2 The Results

The profit optimization The partial derivatives of P0 and Pi are:
∂P0

∂q
= a

(
1 − 2q

b

)
− c,
∂Pi

∂qi
= a

(
1 −

∑
j q j

b

)
− aqi

b
− c, i ∈ n.

Therefore, the optimal decisions and the price, of monopoly and oligopoly, respectively, satisfy the following.
a (1 − 2q̄/b) − c = 0 and p̄ = a (1 − q̄/b), where q̄i = q̄/n, i ∈ n,
a
{
1 − (

∑
j q̃ j + q̃i)/b

}
− c = 0, i ∈ n, p̃ = a

(
1 − (

∑
j q̃ j)/b

)
.

Then,

q̄i =
a − c
2na/b

≥ 0, p̄ =
a + c

2
, i ∈ n, (6)

q̃i =
a − c

(n + 1)a/b
≥ 0, i ∈ n, (7)∑

j

q̃ j =
n(a − c)

(n + 1)a/(b)
> 0, p̃ =

a + nc
n + 1

, (8)

The inequalities in the above relations come from the constraints C. In particular, that of (6) comes from the assumption
that the market can be established in monopoly, that of (7) comes from the assumption that producer i may play some
role in oligopoly, and that of (8) comes from the assumption that at least one producer may produce non-zero amount
of products in oligopoly.

Profits of producers The profits of producer i, in monopoly, in oligopoly and in perfect competition, are, respectively,

R̄i = R̄ = P0(q̄i)/n =
(a − c)2b

4na
(i ∈ n), R̃i = R̃ = Pi(q̃) =

aq̃2
i

b
=

b(a − c)2

a(n + 1)2 (i ∈ n) and R̂i = R̂ = 0.

Since the producer profits of the social optimum (monopoly), the atomic Nash equilibrium (oligopoly), and the
non-atomic Nash equilibrium (perfect competition) are symmetric and unique, we can use the corollary 1. Therefore,
the magnitude of, kR, of Pareto inefficiency of the oligopoly is as follows: kR = R̄/R̃ = (n + 1)2/(4n).

Remark 1 Thus the magnitude of Pareto inefficiency of the atomic Nash equilibrium kR decreases as the number of
players n decreases and finally it reaches the Pareto optimality of the social optimum (n = 1). kR increases as the
number of players n increases and finally up to that,∞, of the non-atomic Nash equilibrium (n→ ∞). �

Note that, in the Nash equilibria and the social optimum of this game, the profit of every player (producer) is
unique and symmetric within each equilibrium and optimum. Thus, we can apply the corollaries 1 and 2 to this model.

Theorem 2 There exist economic games where the magnitudes of Pareto inefficiency of atomic and non-atomic Nash
equilibria (and the price of anarchy) can increase without bound.

Consumer surpluses The consumer surplus in each market is as follows. Define Z = 1 − c/a.
In monopoly, the consumer surplus for the market is C̄ = (1/2)q̄(a − p̄) = abZ2/8.
In oligopoly, the quantity, q̃(c) of the commodity that the consumers in the market consume is to be b(1 − p̃/a). Then,

the consumer surplus for the market is C̃ = (1/2)q̃(c)(a − p̃) = {a/(2b)}
(∑

j q̃ j

)2
= [abn2/{2(n + 1)2}]Z2.

In perfect competition, the consumer surplus for the market is Ĉ = (1/2)Q(a − p̂) = abZ2/2.
Therefore, the ratio, kC , of consumer surplus improvement for the market from that of monopoly to that of

oligopoly is: kC = C̄/C̃ = (n + 1)2/(4n2).

Remark 2 (n + 1)2/(4n2) decreases slowly in n, and (n + 1)2/(4n2) → 1/4 as n → ∞. Therefore, as the number
of producer n increases, the ratio of consumer surplus improvement 1/kC from that of monopoly to that of oligopoly
increases, and finally the system approaches the situation where the consumers enjoy the consumer surplus in perfect
competition, that is, 4 times of that in monopoly. �
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3.2 Load Balancing in a Two Symmetric Node Model — A Congestion Game
3.2.1 The Model and Assumptions

We consider a model consisting of two identical servers (nodes) and a communication means that connects both
servers. Servers are numbered 1 and 2 (Fig. 1). Jobs (or customers) are classified into 2n classes Rik, i = 1, 2, k =
1, 2, · · · , n. Jobs of class Rik arrive only at server i with identical rate 1/n, Out of each class arrival, the rate xik of
jobs are forwarded upon arrival through the communication means to the other server j (i , j) to be processed there.
Therefore the remaining rate 1/n − xik of class Rik jobs are processed at server i. We have 0 ≤ xik ≤ 1/n, i = 1, 2.
We denote the vector (x11, x12, · · · , x1n, x21, x22, · · · , x2n) by x. We denote the set of x’s that satisfy the constraints
by CC. Within these constraints, a set of values of xik (i = 1, 2, k = 1, 2, · · · , n) are chosen to achieve optimization.
Thus the load βi on server i is given by βi = 1 − ∑

l xil +
∑

l x jl, (i , j). Then, the expected processing (including
queueing) time Di(βi) of a job that is processed at server i (or the cost function at server i) is Di(βi) = 1/(µ − βi) for
βi < µ (otherwise it is infinite) (We have a simple assumption of the external time-invariant Poisson arrival for each
class, and the exponentially distributed service times for each class jobs with identical service rate µ at both servers.)

As to the communication means, we consider two communication lines 1 and 2 separately for each server. One
line i is used for forwarding of a job that arrives at server i. The expected communication time of a job arriving at
server i and being processed at server j (, i) is expressed simply as t, i.e., independent of the traffic and the job class
and with no queueing delay.

server 1 server 2

tt

11

1β

µ−β1 µ−β2

2β

Figure 1: The system model.

We refer to the length of time between the instant when a job arrives at a server and the instant when a job leaves
one of the servers after all processing and communication, if any, are over as the sojourn time for the job.

Thus the expected sojourn time of a class Rik job that arrives at server i is

Tik(x) = n{(1
n
− xik)Tiik(x) + xikTi jk(x)}, (9)

where Tiik(x) = Di(βi) and Ti jk(x) = D j(β j) + t, for j , i. (The above expressions hold, again, only for positive values
of denominators, and are otherwise infinite.)

Then, the overall expected sojourn time of a job that arrives at the system is

T (x) =
1
2n

∑
i,k

Tik(x). (10)

3.2.2 The Results

We have three optima, the social optimum, the non-atomic Nash equilibrium, and the atomic Nash equilibrium, as in
the following.

(1) [Completely centralized optimization — social optimum] The social optimum is given by such x̄ as satisfies the
following: T (x̄) = min T (x) with respect to x ∈ CC.
The solution x̄ is unique and simply given as follows: x̄ = 0, i.e., x1k = x2k = 0 for all k and T (x̄) = Tik(x̄) =
1/(µ − 1), i = 1, 2, k = 1, 2, · · · , n.
This is intuitively clear. Or, this can be easily seen if we note that, since the overall mean sojourn time T (x) is ex-
pressed as follows from (9) and (10): 2T (x) = 2µ(µ − 1)/{(µ − 1)2 − d2} + st − 2,
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where d =
∑

l(x1l − x2l) and s =
∑

l(x1l + x2l), T (x) is minimum if and only if x1k = x2k = 0 for k = 1, 2, · · · , n.

(2) [Completely distributed optimization — non-atomic Nash equilibrium] The non-atomic Nash equilibrium (or
Wardrop equilibrium) is given by such x̂ as satisfies the following for all i, k

Tik(x̂) = min{Tiik(x̂),Ti jk(x̂)} (i , j) such that x̂ ∈ CC. (11)

The solution x̂ is unique and given as follows: x̂ = 0, i.e., x̂1k = x̂2k = 0, for all k,
And, again, T (x̂) = Tik(x̂) = 1/(µ − 1), for all i, k,

[Proof] The solution x̂ for (11) is characterized as follows:

D1(β̂1) > D2(β̂2) + t, x̂1k = 1/n (12)
D1(β̂1) = D2(β̂2) + t, 0 ≤ x̂1k ≤ 1/n (13)
D1(β̂1) < D2(β̂2) + t, x̂1k = 0 (14)
D2(β̂2) > D1(β̂1) + t, x̂2k = 1/n (15)
D2(β̂2) = D1(β̂1) + t, 0 ≤ x̂2k ≤ 1/n (16)
D2(β̂2) < D1(β̂1) + t, x̂2k = 0 (17)

for all k. We can easily see that these are satisfied if and only if x̂1k = x̂2k = 0 for all k, by noting that, for example,
(12) and (13) contradict with any of (15), (16), and (17), and thus that only (14) and (17) can hold together. �

(3) [Intermediately distributed optimization — atomic Nash equilibrium] The atomic Nash equilibrium is given by
such x̃ as satisfies the following for all i, k, Tik(x̃) = minxik Tik(x̃−(ik); xik), such that (x̃−(ik); xik) ∈ CC.
where (x̃−(ik); xik) denotes the 2n vector in which the element corresponding to x̃ik has been replaced by xik.

(A) The case where t > 1/{n(µ − 1)2}: The solution x̃ is unique and given as follows: x̃ = 0, i.e., x̃1k = x̃2k =

0, for all k.
And, again, T (x̃) = Tik(x̃) = 1/(µ − 1), i = 1, 2, k = 1, 2, · · · , n.

(B) The case where t ≤ 1/{n(µ − 1)2}: The solution x̃ is unique and given as follows:

x̃1k = x̃2k =
1
2
{1
n
− t(µ − 1)2}, for all k. (18)

And in that case, we have

T (x̃) = T1k(x̃) = T2k(x̃)

=
1
µ − 1

+
t
2
{1 − nt(µ − 1)2}, for all k. (19)

[Proof] From the definition (9) we have

(1/n)
∂Tik

∂xik
= −
µ − n − 1

n
+

∑
l,k

xil −
∑

l

x jl

(µ − 1 +
∑

l

xil −
∑

l

x jl)2

+

µ − 1 −
∑
l,k

xil +
∑

l

x jl

(µ − 1 −
∑

l

xil +
∑

l

x jl)2
+ t (i , j). (20)

By simple inspection of (20), we see that
∂Tik

∂xik
is monotonically increasing with the increase in xik with feasible x ∈ CC.

Thus if we can find a set of such values of x̃ that satisfies

∂Tik

∂xik
(x̃) = 0, for all i, k, (21)
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then the set of values is a solution of the atomic Nash equilibrium. We have from (20) and defining d =
∑

l(x1l − x2l)∑
l

(1/n){∂T1l

∂x1l
− ∂T2l

∂x2l
}

=
2nµ − (2n − 1)(1 + d)

(µ − 1 − d)2 − 2nµ − (2n − 1)(1 − d)
(µ − 1 + d)2

= (
2d

(µ − 1)2 − d2 )(
2µ(µ − 1)

(µ − 1)2 − d2 + 2n − 1), (22)

If condition (21) holds, then from (22), we have d = 0. Then from (20) we have

(1/n)
∂Tik

∂xik
=

2xik − 1/n
(µ − 1)2 + t = 0, (i , j) for all i, k. (23)

Therefore xik = (1/2)(1/n − t(µ − 1)2) for all i, k if t ≤ 1/{n(µ − 1)2}.
From the above derivation, it is clear that this is a unique solution (in case (B)).

If t > 1/{n(µ − 1)2} (in case (A)), we have from (23) when xik = 0, for all i, k, (
1
n

)
∂Tik

∂xik
= t − 1

n(µ − 1)2 >

0, for all i, k.

Considering that
∂Tik

∂xik
is monotonically increasing with xik, we have that x̃ik = 0, for every i, k, is an atomic Nash

equilibrium solution.
We can easily see the uniqueness as in the following. Suppose x̃1k > 0 for some k. From definitions on d and by

(20) we have then

(1/n)
∂T1k

∂x1k
= −
µ − n − 1

n
+ d − x̃1k

(µ − 1 + d)2 +
µ − 1 − d + x̃1k

(µ − 1 − d)2 + t = 0. (24)

Then from the above and condition on t we have

{ 1
(µ − 1 + d)2 +

1
(µ − 1 − d)2 )}x̃1k

= −t − 2d
(µ − 1)2 − d2 +

1
n(µ − 1 + d)2

<
1

n(µ − 1 + d)2 −
1

n(µ − 1)2 −
2d

(µ − 1)2 − d2 . (25)

This implies d < 0 for which there must exist some nonzeo x2k′ . Then by using the argument similar to the above on
x2k′ we have d > 0, which is a contradiction. Thus x̃ = 0 is the unique atomic Nash equilibrium solution.

For the proofs of the existence and uniqueness of those optima for more general setting, see (Altman and Kameda,
2005; Altman, Kameda and Hosokawa, 2002; Orda, Rom and Shimkin, 1993). �

A proof for the model more general than the one presented here has been given, but it covers more than 5 journal
pages and will take much time to follow (Kameda and Pourtallier, 2002). Then, herein, we show a proof specific to
this special model and much simpler than the general proof.

Remark 3 Consider the case (B) in the atomic Nash equilibrium. In this case, the atomic Nash equilibrium is Pareto
inefficient. In contrast, the solutions of the social optimum, the non-atomic Nash equilibrium and the atomic Nash
equilibrium in case (A) are identical and all Pareto optimal. As n increases in the atomic Nash equilibrium with case
(B) (see eq. (19)), T (x̃) decreases as far as t ≤ 1/{n(µ− 1)2} holds. Then, as n increases further, t > 1/{n(µ− 1)2} (case
(A)) holds and T (x̃) becomes the same as those of the social optimum and the non-atomic Nash equilibrium. Since
the solutions of the social optimum and the Nash equilibrium are symmetric, we can use the corollary 1. Thus the
magnitude of Pareto inefficiency of the atomic Nash equilibrium decreases as the number of players 2n increases and
finally it reaches the non-atomic Nash equilibrium that is Pareto optimal. On the other hand, we cannot let the atomic
Nash equilibrium be down to the social optimum since we cannot reduce the number of atomic players 2n down to 1.
�
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Furthermore, we can easily see that Tik(x̃)(= T (x̃)), for every i, k, has its maximum T̃ (µ, n) (i.e., the worst-case
performance) for given µ, n.

T̃ (µ, n) =
1
µ − 1

{1 + 1
8n(µ − 1)

}, (26)

when
t =

1
2n(µ − 1)2 . (27)

Thus if we add the communication lines with delay t (= 1/{2n(µ − 1)2}) to the system that has had no communi-

cation means, the expected sojourn time of each class (player) Tik(x̃) increases in the amount of
1

8n(µ − 1)2 (i.e., the

performance degrades).
The magnitude of Pareto inefficiency of the atomic Nash equilibrium for given µ, n is to be

∆(µ, n) =
T̃ (µ, n)
T0(µ)

, (28)

where T0(µ) = 1/(µ − 1) denotes the mean sojourn time of the social optimum for given µ. Then we have

∆(µ, n) = 1 +
1

8n(µ − 1)
. (29)

Remark 4 Consider the atomic Nash equilibrium with the case (B). In this case, each player forwards a part of
his/her jobs through the communication means to the other server for remote processing, and thereby has degradation
in his/her mean sojourn time. The ratio of such degradation, and thus the magnitude of Pareto inefficiency can increase
without bound as the total arrival rate approaches the processing capacity of each server. Differently from the economic
game presented in subsection 3.1, herein the increase without bound of MoI may occur for all i > 1 but with the
approach of the job processing capacity µ of the nodes to the job arrival rate 1. �

Note that, in the Nash equilibria and social optimum of this game, the cost of every player is unique and symmetric
within each equilibrium and optimum. Thus, we can apply the corollaries 1 and 2 to this model.

Theorem 3 There exist congestion games where the degrees of Pareto inefficiency of atomic Nash equilibria (and the
price of anarchy) can increase without bound.

3.2.3 Numerical Examples

For example, we examine the following case: µ = 1.01. Then the mean sojourn time is T0(µ) = 1/(µ − 1) = 100 in
the social optimum, in the non-atomic Nash equilibrium (Wardrop equilibrium), and in the case of no communication
line and no forwarding of jobs.
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Figure 2: The mean response (sojourn) times for each class jobs (player) in the atomic Nash equilibria (or Nash
equilibria) with µ = 1.01 and n = 1 for the various values of mean communication time t. We see that, in the
paradoxically worst case, adding the communication means with t = 5000 to the system increases the mean response
(sojourn) time up to 1350 from 100, that of no communication means.
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Figure 3: The mean response (sojourn) times for each class jobs (player) in the atomic Nash equilibria (or Nash
equilibria) with µ = 1.01 and n = 100 for the various values of mean communication time t. We see that, in the
paradoxically worst case, adding the communication means with t = 50 to the system increases the mean response
(sojourn) time up to only 112.5 from 100, that of no communication means.

Firstly, we consider the case where n = 1, i.e., the number of classes is 2. The mean sojourn time of the atomic
Nash equilibria (Nash equilibrium) for various values of t is shown in Fig. 2.

As we can see from the figure, T = Tik takes its maximum value

T̃ (µ, n) = 1350 (see(26))

and the magnitude of Pareto inefficiency (the worst-case ratio of the performance degradation) ∆(µ, n) is

∆(µ, n) = 13.50 (i.e., 1350% degradation) (see (28))

when t = 1/{2(µ − 1)2} = 5000 (see (27)). Then
x̃1k = x̃2k = (1/2){1 − t(µ − 1)2} = 1/4 (k = 1) (see (18)). In this case, x̃1k = x̃2k decrease from 1/2 down to 0 as t

increases from 0 to 10000 (= 1/(µ − 1)2), and for t > 10000, no forwarding of jobs occurs.
It is amazing that, in the Nash equilibrium, each class (player) keeps to forward a part of his/her jobs to the other

server even though the communication delay for forwarding is much greater than the processing delay at the server at
which his/her jobs arrive.

Then we consider the case where n = 100, i.e., the number of classes is 200.
The mean sojourn time of the atomic Nash equilibria (Nash equilibrium) for various values of t is shown in Fig. 3.
As we can see from the figure, T = Tik takes its maximum value T̃ (µ, n) = 112.5 (see(26)) and the magnitude of

Pareto inefficiency ∆(µ, n) is ∆(µ, n) = 1.125 (i.e., 12.50% degradation) (see (28)) when t = 1/{2n(µ − 1)2} = 50
(see (27)). Then

x̃1k = x̃2k = (1/2){1/n − t(µ − 1)2} = 1/400 for all k (see (18)).

In this case, x̃1k = x̃2k decrease from 1/200 down to 0 as t increases from 0 to 100 (= 1/(µ − 1)2), and for t > 100,
no forwarding of jobs occurs.

Thus we see that the magnitude of Pareto inefficiency is greatly reduced from the case of n = 1.

Furthermore we consider other values of µ with n = 1.
For µ = 1.001, ∆(µ, n) = 126 (i.e., 12600% degradation), and
for µ = 1.00001, ∆(µ, n) = 12501 (i.e., 1250100% degradation), etc.
In this way, we see that the magnitude of Pareto inefficiency ∆(µ, n) can increase without bound as µ approaches 1
with n = 1.

4 Concluding Remarks
We have tried to make clear the definition of the magnitude of Pareto inefficiency of Nash equilibria. We have proven
that the price of anarchy (PoA) presents the magnitude of Pareto inefficiency of the unique Nash equilibrium in the
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case where the Nash equilibrium and the social optimum are both symmetric although utilities of players may be
asymmetric in other feasible states. Then we have observed the way how the magnitude of Pareto inefficiency depends
on the degree of dispersion of decision making, i.e., the number of non-cooperative players in Nash equilibria. We have
examined a simple economic game and a simple congestion game for examining the trends on the magnitude of Pareto
inefficiency of atomic and non-atomic Nash equilibria. We have shown, respectively, in the economic and congestion
games, the magnitude of Pareto inefficiency of the Nash and atomic Nash equilibrium (and also PoA therein) can
increase without bound.
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