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Abstract

We investigate the contour integral based eigensolvers for computing all eigenvalues
located in a certain region and their corresponding eigenvectors. In this paper, we focus
on the Rayleigh-Ritz type method and analyze its accuracy. From the results of our
accuracy analysis, we conclude that the Rayleigh-Ritz type of the contour integral based
eigensolver with enough subspace size can achieve high accuracy for target eigenpairs
even if some eigenvalues exist outside, but near, the region.

1 Introduction

In this paper, we consider the contour integral based eigensolvers for computing all eigenval-
ues located in a certain region and their corresponding eigenvectors(λi,xi) for the general-
ized eigenvalue problem of the form

Axi = λiBxi, xi ∈ Cn \ {0}, λi ∈ Ω ⊂ C, (1)

whereA,B ∈ Cn×n andA − zB is assumed to be nonsingular for anyz on the boundary
of Ω. Let m be the number of eigenvalues located inΩ, and is generally unknown. Such
eigenvalue problems arise in many areas of computational science and engineering.

The contour integral based eigensolver for solving generalized eigenvalue problems (1)
was first introduced by Sakurai and Sugiura in 2003 [10]. Since then, several authors have
actively studied and proposed improvement techniques based on the concepts of Sakurai and
Sugiura [4–6, 8, 11, 13]. The concepts of Sakurai and Sugiura have also been extended for
solving nonlinear eigenvalue problems [1–3,14].

In this paper, we specifically investigate the block and Rayleigh-Ritz type of the contour
integral based eigensolver called the block SS-RR method [5] for solving (1). We analyze the
accuracy of the eigenpairs obtained from the block SS-RR method with the numerical integra-
tion. We also analyze the accuracy when a certain computation in the numerical integration
is contaminated; details will be described in Section 4. Here, we note that our analyses in this
paper are not for roundoff errors, but only for errors from the numerical integration.

For our accuracy analyses, we also assume that the matrix pencil(A,B) is diagonalizable,
i.e.,

P̃H(zB − A)Q = z

[
Ir

On−r

]
− Λ, (2)



whereΛ := diag(λ1, λ2, . . . , λn) is a diagonal matrix and̃P := [p̃1, p̃2, . . . , p̃n], Q :=
[q1, q2, . . . , qn] are nonsingular matrices.Ir andOn−r denote ther dimensional identity
matrix and the(n − r) × (n − r) zero matrix with all their entries being zero, respectively.
The generalized eigenvalue problemAxi = λiBxi hasr := rank(B) finite eigenvalues
λ1, λ2, . . . , λr andn− r infinite eigenvalues. The vectors̃pi andqi are the corresponding left
and right eigenvectors, respectively.

The remainder of this paper is organized as follows. In Section 2, we briefly describe the
basic concepts of the contour integral based eigensolver, and the algorithm of the block SS-
RR method with the continuous integration. In Section 3, we show the algorithm of the block
SS-RR method with the numerical integration, and analyze its accuracy. In Section 4, we an-
alyze the accuracy when a certain computation in the numerical integration is contaminated.
Finally we draw some conclusions in Section 5.

Throughout, the following notations are used. LetV = [v1,v2, . . . ,vL] ∈ Cn×L, then
span{V } := span{v1,v2, . . . ,vL}. Also, letA ∈ Cn×n, thenK□

k (A, V ) is the block Krylov
subspace, and is defined byK□

k (A, V ) := span{[V,AV,A2V, . . . , Ak−1V ]}.

2 The contour integral based eigensolver

As a powerful algorithm for solving the generalized eigenvalue problem (1), the contour
integral based eigensolver was first introduced by Sakurai and Sugiura in 2003 [10]; this is
called the SS-Hankel method. For solving (1), they introduced the rational function

f(z) := uH(zB − A)−1Bv, u,v ∈ Cn \ {0}, (3)

whose poles are eigenvaluesλ of the generalized eigenvalue problem; they then considered
computing all poles located inΩ.

All poles located in a certain region of an analytic function can be computed by the
algorithm in [7], which is based on the Cauchy’s integral formula

f(a) =
1

2πi

∮
Γ

f(z)

z − a
dz, (4)

whereΓ is the positively oriented Jordan curve (the boundary ofΩ). Applying the algorithm
in [7] to the rational function (3), the eigenpairs(λi,xi) of the generalized eigenvalue prob-
lem (1) can be obtained from the generalized eigenvalue problem:H<

Mui = θiHMui, where
HM andH<

M are smallM ×M Hankel matrices whose entries consist of the moments

HM(i, j) = µi+j−2, H<
M(i, j) = µi+j−1, µk :=

1

2πi

∮
Γ

zkf(z)dz.

For details, we refer to [10].
For more accurate eigenpairs, an improvement on the SS-Hankel method has been pro-

posed [11] based on using the Rayleigh-Ritz procedure, and is called the SS-RR method.
Block variants of the SS-Hankel method and the SS-RR method have also been proposed [4,5]
for the higher stability of the algorithms, specifically when multiple eigenvalues exist inΩ.
These are called the block SS-Hankel method and the block SS-RR method, respectively. Re-
cently we have also introduced an Arnoldi-based interpretation of the contour integral based
eigensolvers and proposed a new algorithm named as the block SS-Arnoldi method [6].
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Algorithm 1 The block SS-RR method with the continuous integration

Input: L,M ∈ N, V ∈ Cn×L

Output: Eigenpairs(λi,xi) for i = 1, 2, . . . , LM
1: ComputeSk =

∮
Γ
zk(zB − A)−1BV dz for k = 0, 1, . . . ,M − 1

2: Compute the orthogonalization ofS = [S0, S1, . . . , SM−1] : W = orth(S)
3: Compute eigenpairs(θi,ui) of the matrix pencil(WHAW,WHBW ),

and(λi,xi) = (θi,Wui) for i = 1, 2, . . . , LM

As another approach of the contour integral based eigensolver, Polizzi has proposed the
FEAST eigensolver in 2009 [8] and developed it [13]. The FEAST eigensolver is the sub-
space iteration-type method based on the concepts of Sakurai and Sugiura, and one iteration
of it can also be regarded as a special case of the block SS-Arnoldi method [6].

We describe the algorithm of the block SS-RR method. LetV ∈ Cn×L \ {O} such that
V H[x1,x2, . . . ,xm] is full rank, e.g., a random matrix. Then, the block SS-RR method [5]
constructs theLM -dimensional subspacespan{S} for the Rayleigh-Ritz procedure, where

S := [S0, S1, . . . , SM−1], Sk :=
1

2πi

∮
Γ

zk(zB − A)−1BV dz. (5)

The algorithm of the block SS-RR method with the continuous integration (5) can be shown
in Algorithm 1.

For the subspace constructed by the block SS-RR method with the continuous integration
(Algorithm 1), we have the following theorem.

Theorem 1. Letm be the number of eigenvalues of (1) andm ≤ LM . We also letV ∈ Cn×L

such thatV H[x1,x2, . . . ,xm] is full rank. Then we have

span{S} = span{xi|λi ∈ Ω, i = 1, . . . ,m}.

Proof. From the diagonalization of the matrix pencil (2), we have

(zB − A)−1 = Q

(
z

[
Ir

On−r

]
− Λ

)−1

P̃H, B = P

[
Ir

On−r

]
Q̃H,

whereP := P̃−H, Q̃H := Q−1. Here letQ = [q1, q2, . . . , qn], Q̃ = [q̃1, q̃2, . . . , q̃n] and
Λ = diag(λ1, λ2, . . . , λn). Then, from the Cauchy’s integral formula (4), the matrixSk in (5)
can be rewritten by

Sk =
1

2πi

∮
Γ

r∑
i=1

zk

z − λi

qiq̃
H
i V dz

=
∑
i,λi∈Ω

λk
i qiq̃

H
i V

= QΓΛ
k
ΓQ̃

H
ΓV,

whereΛΓ = diag{λi|λi ∈ Ω}, QΓ = [qi|λi ∈ Ω], Q̃Γ = [q̃i|λi ∈ Ω]. This leads to

S = [S0, S1, . . . , SM−1] = QΓY,
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Algorithm 2 The block SS-RR method with the numerical integration

Input: L,M,N ∈ N, V ∈ Cn×L, (zj, ωj), j = 1, 2, . . . , N
Output: Eigenpairs(λi,xi) for i = 1, 2, . . . , LM

1: ComputeŜk =
∑N

j=1 ωjz
k
j (zjB − A)−1BV for k = 0, 1, . . . ,M − 1

2: Compute the orthogonalization of̂S = [Ŝ0, Ŝ1, . . . , ŜM−1] : W = orth(Ŝ)
3: Compute eigenpairs(θi,ui) of the matrix pencil(WHAW,WHBW ),

and(λi,xi) = (θi,Wui) for i = 1, 2, . . . , LM

where

Y := [Λ0
Γ,Λ

1
Γ, . . . ,Λ

M−1
Γ ]


Q̃H

ΓV

Q̃H
ΓV

. ..

Q̃H
ΓV

 .

SinceV H[x1,x2, . . . ,xm] is full rank,Q̃H
ΓV andY are also full rank matrices. Therefore

span{S} = span{QΓ} = span{xi|λi ∈ Ω} because ofqi = xi. Thus Theorem 1 is proven.

3 Accuracy analysis on the block SS-RR method

In this section, we introduce the algorithm of the block SS-RR method with the numerical
integration, we then analyze its accuracy. We also experimentally evaluate the results of the
accuracy analysis.

3.1 The block SS-RR method with the numerical integration

The continuous integration (5) is approximated by some numerical integration rule such as
theN -point trapezoidal rule withN ≥ M − 1

S ≈ Ŝ := [Ŝ0, Ŝ1, . . . , ŜM−1], Ŝk :=
N∑
j=1

ωjz
k
j (zjB − A)−1BV, (6)

wherezj are the quadrature points andωj are the corresponding weights. Here the weights
ωj are required to satisfy

N∑
j=1

ωjz
k
j = 0, k = 0, 1, . . . , N − 2, (7)

as well as the Cauchy’s integral theorem in the continuous integration. Using the numerical
integration (6), the algorithm of the block SS-RR method with the numerical integration is
shown in Algorithm 2.

Algorithm 2 can be modified in terms of the iteration technique. The basic concept is that
the matrixŜ(ℓ−1)

0 is iteratively calculated, from the initial matrix̂S(0)
0 = V , as follows.

Ŝ
(ℓi)
0 :=

N∑
j=1

ωj(zjB − A)−1BŜ
(ℓi−1)
0 , ℓi = 1, 2, . . . , ℓ− 1. (8)
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Algorithm 3 The block SS-RR method with the iteration technique

Input: L,M,N, ℓ ∈ N, Ŝ(0)
0 = V ∈ Cn×L, (zj, ωj), j = 1, 2, . . . , N

Output: Eigenpairs(λi,xi) for i = 1, 2, . . . , LM

1: ComputeŜ(ℓi)
0 =

∑N
j=1 ωj(zjB − A)−1BŜ

(ℓi−1)
0 for ℓi = 1, 2, . . . , ℓ− 1

2: ComputeŜ(ℓ)
k =

∑N
j=1 ωjz

k
j (zjB − A)−1BŜ

(ℓ−1)
0 for k = 0, 1, . . . ,M − 1

3: Compute the orthogonalization of̂S(ℓ) = [Ŝ
(ℓ)
0 , Ŝ

(ℓ)
1 , . . . , Ŝ

(ℓ)
M−1] : W = orth(Ŝ(ℓ))

4: Compute eigenpairs(θi,ui) of the matrix pencil(WHAW,WHBW ),
and(λi,xi) = (θi,Wui) for i = 1, 2, . . . , LM

ThenŜ(ℓ) is constructed from̂S(ℓ−1)
0 by

Ŝ(ℓ) := [Ŝ
(ℓ)
0 , Ŝ

(ℓ)
1 , . . . , Ŝ

(ℓ)
M−1], Ŝ

(ℓ)
k :=

N∑
j=1

ωjz
k
j (zjB − A)−1BŜ

(ℓ−1)
0 , (9)

andspan{Ŝ(ℓ)} is used for the Rayleigh-Ritz procedure instead ofspan{Ŝ}.
Based on the iteration technique (8) and (9), the algorithm of the block SS-RR method

with the iteration technique is shown in Algorithm 3. Algorithm 3 withℓ = 1 is equivalent to
Algorithm 2. It has been experimentally shown that Algorithm 3 can achieve higher accuracy
even with smallN .

In practice for Algorithms 2 and 3,zk are scaled for accurate calculation and the matrix
Ŝ(ℓ) is also approximated by a low rank matrix for reducing the cost of the Rayleigh-Ritz
procedure.

In the next subsection, we analyze the accuracy of the block SS-RR method with the
iteration technique (Algorithm 3).

3.2 Accuracy analysis on the block SS-RR method with numerical inte-
gration

Here, we analyse the accuracy of the block SS-RR method using the filter function that was
used for analyses on some eigensolvers [4, 12]. As with Theorem 1 for the continuous inte-
gration, Eq. (8) for the numerical integration can be decomposed into each eigenpairs

Ŝ
(ℓi)
0 =

N∑
j=1

r∑
i=1

ωj

zj − λi

qiq̃
H
i Ŝ

(ℓi−1)
0 , ℓi = 1, 2, . . . , ℓ− 1.

Here, letf(λi) be the filter function defined by

f(λi) :=
N∑
j=1

ωj

zj − λi

.

Then,Ŝ(ℓ−1)
0 can be written by

Ŝ
(ℓ−1)
0 =

r∑
i=1

f ℓ−1(λi)qiq̃
H
i V,

5



and this leads to

Ŝ
(ℓ)
k =

N∑
j=1

r∑
i=1

ωjz
k
j

zj − λi

f ℓ−1(λi)qiq̃
H
i V. (10)

Here we have the following proposition.

Proposition 1. Let (zj, ωj) be quadrature points and the corresponding weights satisfying
(7). Then we have

N∑
j=1

ωjz
k
j

zj − λ
= λk

N∑
j=1

ωj

zj − λ
, k = 0, 1, . . . , N − 1, (11)

where we define that00 = 1.

Proof. In the case ofλ = 0, Eq. (11) is naturally satisfied from (7) such that

N∑
j=1

ωjz
k
j

zj − λ
= λk

N∑
j=1

ωj

zj − λ
=

{ ∑N
j=1 ωj/zj (k = 0)

0 (k = 1, 2, . . . , N − 1)
.

Therefore we prove whenλ ̸= 0. We have

ωjz
k
j

zj − λ
=

ωj

zj − λ
λk
(zj
λ

)k
=

ωj

zj − λ
λk

(
1 +

zj − λ

λ

)k

.

Here, from the binomial theorem(a+ b)k =
∑k

p=0

(
k
p

)
ak−pbp, this is rewritten by

ωjz
k
j

zj − λ
=

ωj

zj − λ
λk

k∑
p=0

(
k

p

)(
zj − λ

λ

)p

.

Therefore, the left term of Eq. (11) is

N∑
j=1

ωjz
k
j

zj − λ
=

N∑
j=1

ωj

zj − λ
λk

k∑
p=0

(
k

p

)(
zj − λ

λ

)p

= λk

k∑
p=0

(
k

p

)
λ−p

N∑
j=1

ωj(zj − λ)p−1.

Here from (7), we have

N∑
j=1

ωj(zj − λ)p−1 = 0, p = 1, 2, . . . , N − 1.

Therefore, fork = 0, 1, . . . , N − 1,

N∑
j=1

ωjz
k
j

zj − λ
= λk

(
k

0

)
λ−0

N∑
j=1

ωj(zj − λ)−1 = λk

N∑
j=1

ωj

zj − λ
.

Therefore Proposition 1 is proven.
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Proposition 1 means that Eq. (10) can be rewritten by

Ŝ
(ℓ)
k =

r∑
i=1

λk
i

(
N∑
j=1

ωj

zj − λi

)
f ℓ−1(λi)qiq̃

H
i V

=
n∑

i=1

λk
i f

ℓ(λi)qiq̃
H
i V

= QrΛ
k
rf

ℓ(Λr)Q̃
H
r V, (12)

whereΛr := diag(λ1, λ2, . . . , λr), f(Λr) := diag(f(λ1), f(λ2), . . . , f(λr)),Qr := [q1, q2, . . . , qr]

andQ̃r := [q̃1, q̃2, . . . , q̃r]. From Eqs. (9) and (12),S(ℓ) can be shown by

Ŝ(ℓ) = F ℓU, (13)

where

F := Qrf(Λr)Q̃
H
r ,

U := [V,CrV,C
2
rV, . . . , C

M−1
r V ],

Cr := QrΛrQ̃
H
r .

HereF ∈ Cn×n is the diagonalizable matrix whose eigenpairs are(f(λi), qi) = (f(λi),xi),
andU ∈ Cn×LM such thatspan{U} = K□

M(Cr, V ). Eq. (13) means thatspan{Ŝ(ℓ)} is
constructed by the subspace iteration method ofF with the input matrixU .

Here, we describe a general result of the subspace iteration method. With respect to the
subspace constructed by the subspace iteration method

Vℓ = AℓV0, V0 ∈ Cn×m (14)

for a diagonalizable matrixA, we have the following lemma, see e.g., [9, Theorem 5.2]

Lemma 1. LetVℓ be the matrix obtained from the subspace iteration method (14) for a diago-
nalizable matrixA ∈ Cn×n, whereA = X̃HΛX,X = [x1,x2, . . . ,xn],Λ = diag(λ1, λ2, . . . , λn).
Assume that the eigenvalues are ordered in decreasing order of magnitude|λi| ≥ |λi+1|.
DefiningP(ℓ) and Pm to be the orthogonal projectors onto the subspacesspan{Vℓ} and
span{x1,x2, . . . ,xm}, respectively.

Assume thatV0 such thatPmV0 is full rank. Then for each eigenvectorxi, i = 1, 2, . . . ,m,
there exists a unique vectorsi in the subspacespan{V0} such thatPLsi = xi. Moreover, the
following inequality is satisfied

∥(I − P (ℓ))xi∥2 ≤ αβ

∣∣∣∣λm+1

λi

∣∣∣∣ℓ ,
whereα is some constant independent onℓ, andβ = ∥xi − si∥2.

Proof. See e.g., [9, Theorem 5.2].

In [9, Theorem 4.6], a result of an accuracy analysis of the Rayleigh-Ritz procedure for
solving standard eigenvalue problems is given. We can extend it for solving generalized
eigenvalue problems as follows:
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Lemma 2. Let(λi,xi) be the exact eigenpairs of the matrix pencil(A,B). DefiningPV to be
the orthogonal projector onto the subspaceV. Then, the residual norm of the pairs of(λi,xi)
for the linear operatorsAV := PVAPV , BV := PVBPV satisfy

∥(AV − λiBV)xi∥2 ≤ γ∥(I − PV)xi∥2,

whereγ = ∥PV(A− λiB)(I −PV)∥2.

Proof. From the definition ofAV , BV , we have

∥(AV − λiBV)xi∥2 = ∥PV(A− λiB)(xi − (I − PV)xi)∥2
= ∥PV(A− λiB)(I − PV)xi∥2
= ∥PV(A− λiB)(I − PV)(I − PV)xi∥2
≤ γ∥(I −PV)xi∥2.

Therefore Lemma 2 is proven.

Recall that the block SS-RR method with the numerical integration and the iteration tech-
nique (Algorithm 3) is based on the Rayleigh-Ritz procedure withspan{Ŝ(ℓ)} constructed by
Eq. (13). Therefore, applying Lemmas 1 and 2 to Eq. (13), we provide the following theorem
with respect to the accuracy of the block SS-RR method (Algorithm 3).

Theorem 2. Assume thatf(λi) are ordered in decreasing order of magnitude|f(λi)| ≥
|f(λi+1)|. DefiningP(ℓ) andPLM to be the orthogonal projectors onto the subspacesspan{Ŝ(ℓ)}
andspan{x1,x2, . . . ,xLM}, respectively.

Assume thatU such thatPLMU is full rank. Then for each eigenvectorxi, i = 1, 2, . . . , LM ,
there exists a unique vectorsi in the subspaceK□

M(Cr, V ) such thatPLMsi = xi. Then, the
residual norm of the pairs of(λi,xi) for the linear operatorsA(ℓ) := P(ℓ)AP(ℓ), B(ℓ) :=
P(ℓ)BP(ℓ) satisfy

∥(A(ℓ) − λiB
(ℓ))xi∥2 ≤ αβγ

∣∣∣∣f(λLM+1)

f(λi)

∣∣∣∣ℓ ,
whereα is some constant independent onℓ, β = ∥xi − si∥2, andγ = ∥P(ℓ)(A − λiB)(I −
P(ℓ))∥2.

Proof. From Lemmas 1 and 2, we have

∥(A(ℓ) − λiB
(ℓ))xi∥2 ≤ γ∥(I − P(ℓ))xi∥2 ≤ αβγ

∣∣∣∣f(λLM+1)

f(λi)

∣∣∣∣ℓ .
Therefore Theorem 2 is proven.

Here we note thatγ is bounded from above by the norms of the matrices such that
γ ≤ ∥A∥2 + |λi|∥B∥2, andβ strongly depends on the input subspacespan{U}. Because
of span{U} = K□

M(Cr, V ), if V ∈ Cn×L such thatspan{V } equally contains the compo-
nents of the eigenvectors corresponding toλi ∈ Ω, e.g., the random matrix, and the regionΩ
is not so large, then it is expected that allβ have almost the same value forλi ∈ Ω.

Theorem 2 means that the accuracy of the block SS-RR method in terms of the residual
2-norm∥(A(ℓ) − λiB

(ℓ))xi∥2 is evaluated by the ratio of the magnitude of the filter function
|f(λi)| to the (LM + 1)-th largest one|f(λLM+1)|. The magnitude of the filter function
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Fig. 1: The magnitude of the filter function|f(λ)| of theN -point trapezoidal rule withN =
16, 32, 64 for the circle regionΩ with the centerρ = 0 and radiusγ = 1.

|f(λi)| of theN -point trapezoidal rule withN = 16, 32, 64 for the circle regionΩ with the
centerρ = 0 and radiusγ = 1 can be shown in Fig. 1. The filter function has|f(λ)| ≈ 1
inside the regionΩ, |f(λ))| ≈ 0 far from the region and0 < |f(λ)| < 1 outside but near the
region.

Therefore we observe from Theorem 2 that, using enough subspace sizeLM such that
|f(λLM+1)|ℓ ≈ 0, the block SS-RR method achieves high accuracy for the target eigenpairs
(the eigenvalue is insideΩ) even if some eigenvalues exist outside, but near, the region.

3.3 Experimental evaluation of the accuracy analysis

In this subsection, we experimentally evaluate the results of Theorem 2. We apply the block
SS-RR method (Algorithm 3) to the model problem

Axi = λBxi,

A = diag(0.01, 0.11, 0.21, . . . , 9.91) ∈ R100×100, B = I100,

λi ∈ Ω : circle with center ρ = 0, radius γ = 1,

(15)

and evaluate its accuracy. Here, for the model problem, the number of eigenvalues located in
Ω is m = 10 and outside nearest eigenvalue is1.01.

We evaluate the relation of the accuracy with the number of subspace sizeLM and the
number of iterationℓ. For the first example to evaluate the relation withLM , we fixed
the parameters asL = 10, N = 32, ℓ = 1, and tested four casesM = 1, 2, 3, 4 (LM =
10, 20, 30, 40). For the second example to evaluate the relation withℓ, we fixed the parameters
asL = 5,M = 3, N = 32, and tested four casesℓ = 1, 2, 3, 4. For these examples we set the
quadrature points as follows:

zj = cos(θj) + i sin(θj), θj =
2π

N

(
j − 1

2

)
, j = 1, 2, . . . , N.

The algorithm was implemented in MATLAB R2014a. The input matrixV was set as a
random matrix generated by the Mersenne Twister in MATLAB, and each linear system was
solved by the MATLAB command “\”.

The numerical results are presented in Fig. 2 and Table 1. We show the residual 2-norm
∥ri∥2 := ∥Axi − λiBxi∥2 with L = 10,M = 4, N = 32, ℓ = 1 in Fig. 2(a), and with
L = 5,M = 3, N = 32, ℓ = 4 in Fig. 2(b), respectively. We also show the relationship of the
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(a)L = 10,M = 4, N = 32, ℓ = 1
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(b)L = 5,M = 3, N = 32, ℓ = 4

Fig. 2: The accuracy of the block SS-RR method and the filter function.

Table 1: Relationship of the accuracy of the block SS-RR method withLM andℓ.

(a) Relationship withLM (ℓ = 1)
M (LM) |f(λLM+1)| minλi∈Ω ∥ri∥2 maxλi∈Ω ∥ri∥2

1 (10) 4.21× 10−1 1.76× 10−2 1.34× 10−1

2 (20) 1.98× 10−10 2.29× 10−10 2.11× 10−9

3 (30) 5.03× 10−16 1.44× 10−15 1.20× 10−14

4 (40) 5.20× 10−18 2.03× 10−15 3.46× 10−15

(b) Relationship withℓ (LM = 15)
ℓ |f(λLM+1)|ℓ minλi∈Ω ∥ri∥2 maxλi∈Ω ∥ri∥2
1 2.41× 10−7 1.68× 10−7 7.07× 10−6

2 5.80× 10−14 2.36× 10−13 1.32× 10−11

3 1.40× 10−20 1.67× 10−16 1.37× 10−15

4 3.36× 10−27 2.66× 10−16 7.78× 10−16

minimum and the maximum values of∥ri∥2 in λi ∈ Ω with LM in Table 1(a) and withℓ in
Table 1(b), respectively.

Fig. 2(a) and Table 1(a) show thatminλi∈Ω ∥ri∥2 has approximately the same order with
|f(λLM+1)|, and the difference betweenminλi∈Ω ∥ri∥2 andmaxλi∈Ω ∥ri∥2 are not so large.
We can also observe from Fig. 2(b) and Table 1(b) that∥ri∥2 for λi ∈ Ω decrease exponen-
tially with increasingℓ, although they are bounded by the machine epsilon≈ 10−16. As a
result, the block SS-RR method with enough subspace sizeLM such that|f(λLM+1)|ℓ ≈ 0
shows high accuracy independent on the eigenvalues outside but near the region. This means
that Theorem 2 is experimentally supported by these results.

10



4 Accuracy analysis when a solution of a linear system is
contaminated

In this section, we analyze the accuracy of the block SS-RR method with the numerical
integration (Algorithm 2) when the solution of the linear system in Algorithm 2 step 1 is
contaminated, and experimentally evaluate the results of the accuracy analysis.

Here we consider the case that the solution of the linear system atj′-th quadrature point
is contaminated as follows:

(zj′B − A)−1BV + E, (16)

whereE ∈ Cn×L is an error matrix ofrank(E) = L′. Note that here we have no assumption
on the norm of the error matrixE.

4.1 Accuracy analysis on the block SS-RR method with a contaminated
solution of the linear system

By the contamination of the solution of the linear system (16), the matrixŜk can be replaced
as

Ŝ ′
k :=

N∑
j=1

ωjz
k
j

{
(zjB − A)−1BV + δjj′E

}
,

= Ŝk + ωj′z
k
j′E,

whereδjj′ denotes the Kronecker delta. Therefore, the matrixŜ of (6) is also replaced by

Ŝ ′ = Ŝ + E ′, E ′ := [ωj′E, ωj′zj′E, . . . , ωj′z
M−1
j′ E], (17)

whereE ′ ∈ Cn×LM and rank(E ′) = L′. Then, the subspacespan{Ŝ ′} is used for the
Rayleigh-Ritz procedure of the block SS-RR method with the contaminated solution (16).

Here, we provide a general result of the accuracy analysis of the Rayleigh-Ritz procedure
using the contaminated subspacespan{V ′} := span{V +E} with a low rank error matrixE,
whereV,E ∈ Cn×m andrank(E) = m′ < m. LetEV ∈ Cn×m′

be a matrix whose columns
are basis vectors ofspan{E}. Then, there exists a permutation matrixP ∈ Rm×m such that

EP = EV [EY1EY2 ], (18)

whereEY1 ∈ Cm′×m′
is a nonsingular matrix andEY2 ∈ Cm′×(m−m′). We also let

V P = [V1, V2], Ṽ := V2 − V1E
−1
Y1

EY2 , (19)

whereV1 ∈ Cn×m′
, V2, Ṽ ∈ Cn×(m−m′). Then we have the following lemma.

Lemma 3. Let (λi,xi) be the exact eigenpairs of the matrix pencil(A,B). DefiningP ′ and
P̃ to be the orthogonal projectors onto the subspacesspan{V ′} andspan{Ṽ } ⊆ span{V },
respectively. Then, the residual norm of the pairs of(λi,xi) for the linear operatorsAP ′ :=
P ′AP ′, BP ′ := P ′BP ′ satisfy

∥(AP ′ − λiBP ′)xi∥2 ≤ γ′∥(I − P̃)xi∥2,

whereγ′ = ∥P ′(A− λiB)(I − P ′)∥2.
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Proof. From the Eq. (18) and (19), we have

span{V ′} = span{(V + E)P}
= span{[V1 + EVEY1 , V2 + EVEY2 ]}
= span{[V1 + EVEY1 , V2 − V1E

−1
Y1

EY2 ]}
⊇ span{V2 − V1E

−1
Y1

EY2}
= span{Ṽ }. (20)

From Lemma 2 and (20),

∥(AP ′ − λiBP ′)xi∥2 ≤ γ′∥(I − P ′)xi∥2 ≤ γ′∥(I − P̃)xi∥2

is satisfied. Therefore Lemma 3 is proven.

Recall that the block SS-RR method (Algorithm 2) with the contaminated solution (16) is
based on the Rayleigh-Ritz procedure withspan{Ŝ ′} = span{Ŝ + E ′} defined by Eq. (17).
Let EV ∈ Cn×L′

be a matrix whose columns are the basis vectors ofspan{E}. Then, since
rank(E) = L′, there exists a permutation matrixP ∈ RL×L such that

EP = EV [EY1 , EY2 ],

whereEY1 ∈ CL′×L′
is a nonsingular matrix andEY2 ∈ CL′×(L−L′). Defining P ′ :=

diag(P, P, . . . , P ) ∈ RLM×LM , then we have

E ′P ′ = EV [E
′
Y1
, E ′

Y2
],

whereE ′
Y1

∈ CL′×L′
andE ′

Y2
∈ CL′×(LM−L′) can be written by

E ′
Y1

:= ωj′EY1 ,

E ′
Y2

:= [ωj′EY2 , ωj′zj′EY1 , ωj′zj′EY2 , . . . , ωj′z
M−1
j′ EY1 , ωj′z

M−1
j′ EY2 ],

because of the definition ofE ′ (17). We also let

Ŝ ′P ′ = [Ŝ ′
1, Ŝ

′
2], S̃ := Ŝ ′

2 − Ŝ ′
1E

′−1
Y1

E ′
Y2
,

UP ′ = [U1, U2], Ũ := U2 − U1E
′−1
Y1

E ′
Y2
,

whereŜ ′
1, U1 ∈ Cn×L′

, Ŝ ′
2, S̃, U2, Ũ ∈ Cn×(LM−L′).

Here, from the relationship:̂S ′ = Ŝ + E ′ = FU + E ′, we have

S̃ = FŨ, F := Qrf(Λr)Q̃
H
r . (21)

Therefore, from Lemmas 1 and 3, we provide the following theorem with respect to the
accuracy of the block SS-RR method with the contaminated solution (16).

Theorem 3. Assume thatf(λi) are ordered in decreasing order of magnitude|f(λi)| ≥
|f(λi+1)|. DefiningP ′, P̃ andPLM−L′ to be the orthogonal projectors onto the subspaces
span{Ŝ ′}, span{S̃} andspan{x1,x2, . . . ,xLM−L′}, respectively.

Assume that̃U such thatPLM−L′Ũ is full rank. Then for each eigenvectorxi, i =
1, 2, . . . , LM − L′, there exists a unique vectorsi in the subspacespan{Ũ} ⊆ span{U}
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such thatPLM−L′si = xi. Then, the residual norm of the pairs of(λi,xi) for the linear
operatorsAP ′ := P ′AP ′, BP ′ := P ′BP ′ satisfy

∥(AP ′ − λiBP ′)xi∥2 ≤ α′β′γ′
∣∣∣∣f(λLM−L′+1)

f(λi)

∣∣∣∣ ,
whereα′ is some constant,β′ = ∥xi − si∥2, andγ′ = ∥P ′(A− λiB)(I − P ′)∥2.
Proof. Applying Lemma 1 to Eq. (21) and also applying Lemma 3 to Eq. (17), we have

∥(AP ′ − λiBP ′)xi∥2 ≤ γ′∥(I − P̃)xi∥2 ≤ α′β′γ′
∣∣∣∣f(λLM−L′+1)

f(λi)

∣∣∣∣ .
Therefore Theorem 3 is proven.

Theorem 3 means that the accuracy of the block SS-RR method with the contaminated
solution, in terms of the residual 2-norm∥(AP ′ − λiBP ′)xi∥2, is evaluated by the ratio of the
magnitude of the filter function|f(λi)| to the(LM − L′ + 1)-th largest one|f(λLM−L′+1)|.
Therefore we observe that, using the enough subspace sizeLM such that|f(λLM−L′+1)| ≈ 0,
the block SS-RR method achieves high accuracy for the target eigenpairs (the eigenvalue is
insideΩ) even if the solution of the linear system is contaminated by a low rank error matrix
(16).

We note that Theorem 3 can be naturally extended in the case when some solutions of the
linear systems in different quadrature points are contaminated.

4.2 Further analysis on the results of Theorem 3

In Theorem 3,γ′ is bounded above such thatγ′ ≤ ∥A∥2 + |λi|∥B∥2 just asγ in Theorem 2.
In this subsection, we consider the magnitude ofβ′ in Theorem 3 for eachλi ∈ Ω, which
strongly depends on the input subspacespan{Ũ}. LetV P = [V1, V2], whereV1 ∈ Cn×L′

and
V2 ∈ Cn×(L−L′), thenU1, U2 can be rewritten by

U1 = V1,

U2 = [V2, CrV1, CrV2, . . . , C
M−1
r V1, C

M−1
r V2].

From the definition of̃U we have

span{Ũ} = span{U2 − U1E
′−1
Y1

E ′
Y2
}

= span{U2 − U1(ωj′EY1)
−1[ωj′EY2 , . . . , ωj′z

M−1
j′ EY1 , ωj′z

M−1
j′ EY2 ]}

= span{[V2, CrV1, CrV2, . . . , C
M−1
r V1, C

M−1
r V2]

− V1[E
−1
Y1

EY2 , zj′I, zj′E
−1
Y1

EY2 , . . . , z
M−1
j′ I, zM−1

j′ E−1
Y1

EY2 ]}
= span{[W1,W2]}, (22)

whereW1 ∈ Cn×L′(M−1) andW2 ∈ Cn×(L−L′)M are defined by

W1 := [(Cr − zj′I)V1, (C
2
r − z2j′I)V1, . . . , (C

M−1
r − zM−1

j′ I)V1],

W2 := [V2 − V1E
−1
Y1

EY2 , CrV2 − zj′V1E
−1
Y1

EY2 , . . . , C
M−1
r V2 − zM−1

j′ V1E
−1
Y1

EY2 ].

We can observe from Eq. (22) and the definition ofCr := QrΛrQ̃
H
r that, subspaces

span{W1} and alsospan{Ũ} weakly contain the components of the eigenvectors corre-
sponding to the eigenvaluesλi near the contaminated quadrature pointzj′ . Thereforeβ′

may become larger forλi nearzj′ than others, specifically for the case ofL′ = L.
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Fig. 3: The accuracy of the block SS-RR method when the solution of the linear system is
contaminated forL = 10, L′ = 10,M = 4, N = 32.

4.3 Experimental evaluation of the accuracy analysis

In this subsection, we experimentally evaluate the results of Theorem 3 and of the analysis in
Section 4.2. We apply the block SS-RR method (Algorithm 2) with the contaminated solution
(16) to the model problem (15), and evaluate its accuracy.

We evaluate the relation of the accuracy with the number of subspace sizeLM and the
contaminated quadrature point. To evaluate the relation of the accuracy, we fixed the parame-
ters asL = 10, L′ = 10, N = 32, and tested four casesM = 1, 2, 3, 4 (LM = 10, 20, 30, 40).
The contaminated quadrature point is also tested two cases:

zj′ =


z1 = cos

(
π
32

)
+ i sin

(
π
32

)
≈ 0.9956 + 0.0980i,

z16 = cos
(
31π
32

)
+ i sin

(
31π
32

)
≈ −0.9956 + 0.0980i,

wherez1 is near some eigenvalues inΩ, e.g.,λ9 = 0.91, on the other hand,z16 is far from all
eigenvalues inΩ. The error matrixE was set as a different random matrix fromV , and also
was generated by the Mersenne Twister in MATLAB. Other conditions are the same as the
experiment in Section 3.3.

The numerical results are presented in Fig. 3 and Table 2. We show the residual 2-norm
∥ri∥2 := ∥Axi − λiBxi∥2 with L = 10, L′ = 10,M = 4, N = 32, zj′ = z1 in Fig. 3(a), and
with L = 10, L′ = 10,M = 4, N = 32, zj′ = z16 in Fig. 3(b), respectively. We also show
the relationship of the minimum and the maximum values of∥ri∥2 in λi ∈ Ω with LM for
zj′ = z1 in Table 2(a) and forzj′ = z1 in Table 2(b), respectively.

Fig. 3 and Table 2 show thatmin ∥ri∥2 have approximately the same order with|f(λLM−L′+1)|.
In this regard, however, forzj′ = z1, the difference betweenminλi∈Ω ∥ri∥2 andmaxλi∈Ω ∥ri∥2
are larger than forzj′ = z16; see Table 2. This is based on the fact that∥ri∥2 corresponding to
λi near the contaminated quadrature pointzj′ are larger than others; see Fig. 3(a). As a result,
for the case thatzj′ is far from allλi ∈ Ω, the block SS-RR method with enough subspace
sizeLM shows high accuracy even if the solution of the linear system is contaminated. This
means that Theorem 3 and the analysis in Section 4.2 are experimentally supported by this
results.
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Table 2: Relationship of the accuracy of the block SS-RR method withLM when the solution
of the linear system is contaminated.

(a) z1 is contaminated
M (LM) |f(λLM−L′+1)| minλi∈Ω ∥ri∥2 maxλi∈Ω ∥ri∥2

1 (10) 1.00× 100 5.32× 10−1 2.84× 100

2 (20) 4.21× 10−1 1.84× 10−2 2.63× 10−1

3 (30) 1.98× 10−10 2.43× 10−10 1.63× 10−8

4 (40) 5.03× 10−16 6.57× 10−15 1.91× 10−13

(b) z16 is contaminated
M (LM) |f(λLM−L′+1)| minλi∈Ω ∥ri∥2 maxλi∈Ω ∥ri∥2

1 (10) 1.00× 100 5.54× 10−1 2.89× 100

2 (20) 4.21× 10−1 4.11× 10−2 4.84× 10−1

3 (30) 1.98× 10−10 7.05× 10−10 4.96× 10−9

4 (40) 5.03× 10−16 3.71× 10−15 2.51× 10−14

5 Conclusions

In this paper, we investigated the accuracy of the block SS-RR method with the numerical
integration. Then we provided two theorems for the accuracy analysis with the iteration
technique (Theorem 2) and for the accuracy analysis with the contaminated solution of the
linear system (Theorem 3). From the results of our accuracy analyses, we concluded that
the block SS-RR method with enough subspace size can achieve high accuracy for target
eigenpairs even if some eigenvalues exist outside but near the region, and also even if the
solution of the linear system is contaminated. This also means that the block SS-RR method
has error resilience property, and will lead to an algorithm-based fault tolerance technique
different from checkpoint restart techniques and redundant computations.

In future work, we will analyze for the case of non-diagonalizable matrix pencils. We
will also analyze the accuracy of the Hankel type of the contour integral based eigensolver.
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