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Abstract
We investigate the contour integral based eigensolvers for computing all eigenvalues
located in a certain region and their corresponding eigenvectors. In this paper, we focus
on the Rayleigh-Ritz type method and analyze its accuracy. From the results of our
accuracy analysis, we conclude that the Rayleigh-Ritz type of the contour integral based
eigensolver with enough subspace size can achieve high accuracy for target eigenpairs
even if some eigenvalues exist outside, but near, the region.

1 Introduction

In this paper, we consider the contour integral based eigensolvers for computing all eigenval-
ues located in a certain region and their corresponding eigenvégtons) for the general-
ized eigenvalue problem of the form

Az; = \Bz;, x; € C"\{0}, A eQcCC, 1)

whereA, B € C"*™ and A — zB is assumed to be nonsingular for anyn the boundary
of (2. Letm be the number of eigenvalues locatedinand is generally unknown. Such
eigenvalue problems arise in many areas of computational science and engineering.

The contour integral based eigensolver for solving generalized eigenvalue problems (1)
was first introduced by Sakurai and Sugiura in 2003 [10]. Since then, several authors have
actively studied and proposed improvement techniques based on the concepts of Sakurai and
Sugiura [4-6, 8,11, 13]. The concepts of Sakurai and Sugiura have also been extended for
solving nonlinear eigenvalue problems [1-3, 14].

In this paper, we specifically investigate the block and Rayleigh-Ritz type of the contour
integral based eigensolver called the block SS-RR method [5] for solving (1). We analyze the
accuracy of the eigenpairs obtained from the block SS-RR method with the numerical integra-
tion. We also analyze the accuracy when a certain computation in the numerical integration
is contaminated; details will be described in Section 4. Here, we note that our analyses in this
paper are not for roundoff errors, but only for errors from the numerical integration.

For our accuracy analyses, we also assume that the matrix panél) is diagonalizable,
ie.,

I,

PU (2B - A)Q ==z [ — A, 2)



where A := diag(A1, A2, ..., A,) is a diagonal matrix and® = D1, D2, -, D), Q@ =
(1,4, - - ., q,] are nonsingular matrices/, and O,,_, denote ther dimensional identity
matrix and theln — ) x (n — r) zero matrix with all their entries being zero, respectively.
The generalized eigenvalue problefr; = \;Bx; hasr := rank(B) finite eigenvalues
A1, Ao, ..., A @andn — r infinite eigenvalues. The vectgps andg; are the corresponding left
and right eigenvectors, respectively.

The remainder of this paper is organized as follows. In Section 2, we briefly describe the
basic concepts of the contour integral based eigensolver, and the algorithm of the block SS-
RR method with the continuous integration. In Section 3, we show the algorithm of the block
SS-RR method with the numerical integration, and analyze its accuracy. In Section 4, we an-
alyze the accuracy when a certain computation in the numerical integration is contaminated.
Finally we draw some conclusions in Section 5.

Throughout, the following notations are used. Lét= [v(,v,,...,v;] € C**E, then
span{V'} := span{v;,vs,..., v }. Also, letA € C**", thenK (A, V) is the block Krylov
subspace, and is defined ki (A, V) := span{[V, AV, A%V, ... A1V},

2 The contour integral based eigensolver

As a powerful algorithm for solving the generalized eigenvalue problem (1), the contour
integral based eigensolver was first introduced by Sakurai and Sugiura in 2003 [10]; this is
called the SS-Hankel method. For solving (1), they introduced the rational function

f(z) :=u(zB - A)'Bv, wu,vecC"\{0}, (3)

whose poles are eigenvalugof the generalized eigenvalue problem; they then considered
computing all poles located in.

All poles located in a certain region of an analytic function can be computed by the
algorithm in [7], which is based on the Cauchy’s integral formula

1 [ f(z)
=— ¢ —=d 4
fa) =55 § 2 yds (4)
wherel is the positively oriented Jordan curve (the boundar2pfApplying the algorithm
in [7] to the rational function (3), the eigenpaits;, ;) of the generalized eigenvalue prob-
lem (1) can be obtained from the generalized eigenvalue probigmi; = 6; Hyu;, where
H),s andH;; are smallM x M Hankel matrices whose entries consist of the moments

. . 1
HM(Z7]) = Mit+j-2, Hﬁ(%]) = Mitj—1, Mk ‘= 5 Zkf(z)d2~

2 Jp
For details, we refer to [10].

For more accurate eigenpairs, an improvement on the SS-Hankel method has been pro-
posed [11] based on using the Rayleigh-Ritz procedure, and is called the SS-RR method.
Block variants of the SS-Hankel method and the SS-RR method have also been proposed [4,5]
for the higher stability of the algorithms, specifically when multiple eigenvalues exist in
These are called the block SS-Hankel method and the block SS-RR method, respectively. Re-
cently we have also introduced an Arnoldi-based interpretation of the contour integral based
eigensolvers and proposed a new algorithm named as the block SS-Arnoldi method [6].
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Algorithm 1 The block SS-RR method with the continuous integration

Input: L,M € N,V € C™*F
Output: Eigenpairs()\“ x;)fori=1,2,..., LM
1: ComputeSy, = §.2"(zB — A)"'BVdzfork=0,1,...,. M —1
2. Compute the orthogonallzatlon Of= [So, S1,...,Sm-1] : W = orth(S)
3: Compute eigenpair@;, u;) of the matrix pencil W2 AW, WHBW),
and(\;, x;) = (6;, Wu;)fori=1,2,...,LM

As another approach of the contour integral based eigensolver, Polizzi has proposed the
FEAST eigensolver in 2009 [8] and developed it [13]. The FEAST eigensolver is the sub-
space iteration-type method based on the concepts of Sakurai and Sugiura, and one iteration
of it can also be regarded as a special case of the block SS-Arnoldi method [6].

We describe the algorithm of the block SS-RR method. et C™*L \ {O} such that
VH[x,, xs, ..., ] is full rank, e.g., a random matrix. Then, the block SS-RR method [5]
constructs thé. M/ -dimensional subspaegan{S} for the Rayleigh-Ritz procedure, where

S :=[5,51,...,Su-1], Sk:= i (2B — A)"'BVdz. (5)
21 Jr
The algorithm of the block SS-RR method with the continuous integration (5) can be shown
in Algorithm 1.
For the subspace constructed by the block SS-RR method with the continuous integration
(Algorithm 1), we have the following theorem.

Theorem 1. Letm be the number of eigenvalues of (1) and< LM . We also lel € C**F
such thatVf[x,, x,, . .., x,,] is full rank. Then we have

span{S} = span{x;|\; € Q,i =1,...,m}.
Proof. From the diagonalization of the matrix pencil (2), we have

I, _INH _ I, AH
R AT R P

whereP := P~H QH .= Q~!. Here letQ = [ql,qg,...,qn],@ = [q1,q,-..,q,] and
A = diag(A, Ae, ..., Ay). Then, from the Cauchy’s integral formula (4), the maf§jxin (5)
can be rewritten by

(zB—A)1'=Q (z {

S = 27“?{2 Y qqude
= Z /\quqz

1, EQ

= QFA QF
whereAr = diag{\i|\; € Q}, Qr = [@:|\: € Q], Qr = [G:|\; € ©). This leads to

S — [S(],Sl, e ,SMfl] = QFY,



Algorithm 2 The block SS-RR method with the numerical integration

Input: L,M,N € N,V € C™F (z;,w;),j =1,2,...,N
Output: Eigenpairg\;, ;) fori=1,2,..., LM
1: ComputeS), = Zjil w;zi(zB —A)7'BV fork =0,1,...,M — 1
2: Compute the orthogonalization 6f= [Sy, S, ..., Sy_1] : W = orth(S)
3: Compute eigenpair®;, u;) of the matrix penci(WH AW, WHBW),
and(\;, x;) = (0;, Wu;)fori=1,2,..., LM

where -
Qrv
Siy
Y= [AQ AL, AN Cr
Qv
SinceVl[z,, x,, ..., x,] is full rank, @EV andY are also full rank matrices. Therefore
span{S} = span{Qr} = span{xz;|\; € Q} because of; = x;. Thus Theorem 1 is proven.
L]

3 Accuracy analysis on the block SS-RR method

In this section, we introduce the algorithm of the block SS-RR method with the numerical
integration, we then analyze its accuracy. We also experimentally evaluate the results of the
accuracy analysis.

3.1 The block SS-RR method with the numerical integration

The continuous integration (5) is approximated by some numerical integration rule such as
the N-point trapezoidal rule witiv > M — 1

N
S~ §2: [§07§17~~-;§M71]; §k = ZWjZ;?(ZjB—A)ilB‘/, (6)
j=1
wherez; are the quadrature points ang are the corresponding weights. Here the weights
w; are required to satisfy

N
Y wib=0, k=0,1,...,N-2, (7)
J=1
as well as the Cauchy'’s integral theorem in the continuous integration. Using the numerical
integration (6), the algorithm of the block SS-RR method with the numerical integration is
shown in Algorithm 2.
Algorithm 2 can be modified in terms of the iteration technique. The basic concept is that

the matrix§é€_1) is iteratively calculated, from the initial matri%o) =V, as follows.

N
S =S (5B - A BSYY, G= 1,2, 0L, ®)

j=1



Algorithm 3 The block SS-RR method with the iteration technique

Input: L, M,N,leN,5\ =V e C™L (z5,w;),j =1,2,...,N
Output: Elgenpalrs()\z,;cl) fori=1,2,...,LM
: ComputeSy™ = S w;(4B — A) lBs’f Dor; =1,2,...,0—1

ComputeS\” = SV o, 2§(zB — A)” LBy fork:O,l,...,M—l

7j=1
Compute the orthogonalization 60 =[S\ 3 . 3 ] W = orth(5®)
Compute eigenpair®;, u;) of the matrix pencil WEAW, WHBW),
a.nd(/\i7 :c,) = (0“ W'U,Z) fori=1,2,..., LM

Ao N R

ThenS® is constructed frons' ) by

N
SO= 5,87, LS 80 = e (5B - ATBSTY, (@)

Jj=1

andspan{5®} is used for the Rayleigh-Ritz procedure insteadef{3}.

Based on the iteration technique (8) and (9), the algorithm of the block SS-RR method
with the iteration technique is shown in Algorithm 3. Algorithm 3 witk- 1 is equivalent to
Algorithm 2. It has been experimentally shown that Algorithm 3 can achieve higher accuracy
even with smallV.

__In practice for Algorithms 2 and 3" are scaled for accurate calculation and the matrix
S is also approximated by a low rank matrix for reducing the cost of the Rayleigh-Ritz
procedure.

In the next subsection, we analyze the accuracy of the block SS-RR method with the
iteration technique (Algorithm 3).

3.2 Accuracy analysis on the block SS-RR method with numerical inte-
gration
Here, we analyse the accuracy of the block SS-RR method using the filter function that was

used for analyses on some eigensolvers [4,12]. As with Theorem 1 for the continuous inte-
gration, Eqg. (8) for the numerical integration can be decomposed into each eigenpairs

@H§(&—1), 0=1,2,... . 0—1.

]111

Here, letf()\;) be the filter function defined by

Then, S\ " can be written by

r

§((J£—1) _ Zfe_l()\i)qiiﬁ{‘/a

=1



and this leads to

ZZ 5 S 00adly, (10)

jlll

Here we have the following proposition.

Proposition 1. Let (z;,w;) be quadrature points and the corresponding weights satisfying
(7). Then we have

N k
>
Z p—
j=1 "7

where we define th&f = 1.

k=01,...,N —1, (11)

N
— )\k E wj
Z —_
j=1 "

Proof. In the case oA = 0, Eq. (11) is naturally satisfied from (7) such that

N N
3 w;Zy —AY wi [ Yiiwi/z (k=0)
S D~ T S (k=1,2,...,N—1)

j=1"7

Therefore we prove whek # 0. We have

k k
Wi%j k F i \k Zj— A
A = —\ .
zj—)\ z—)\ ()\> —)\ ( A )

> ao ()ak=707, this is rewritten by

p=0

Here, from the binomial theorefa + b)*

(,c)ij]-C - /\kzk: k Zj—)\ b
Zi— A —)\ —\p A '

Therefore, the left term of Eq. (11) is

N w.z/‘ﬁ N A k k 0 P
>0 - e () (5
N

j=1 " j=1 "7 p=0
k
_ )\k k 7P — NP1
= E : E :wJ(Z] )
p=o ‘P j=1

Here from (7), we have
> wilzi— APt =0, p=12...,N-1L

Therefore, fork =0,1,..., N — 1,

i ij;? — \k k )‘Oiw'('z'_)‘>1:)\k2 wij
— Zj—/\ 0 = I Zj—A.

j=1

Therefore Proposition 1 is proven. O



Proposition 1 means that Eq. (10) can be rewritten by
N r N W
S = Z)‘f (Z s\ _JA> FH eV
. i 2
Z MO gid)!

= Qr/\ffﬁ( DRV, (12)

whereA, := diag(A1, As, ..., Ar), f(A) = diag(f (M), f(A2)s -, (M), @r = [q1, G2, - - -, @]
and@, := [q1, @2, . . ., g,]. From Egs. (9) and (12)5) can be shown by

SO = iy, (13)
where
F o= Qrf( 7") ro
U = [V,C.V,C?V,...,CM V],
Or = QrAr@qIﬂ{

Here ' € C™*" is the diagonalizable matrix whose eigenpairs@e\;), q;) = (f(\), z;),
andU € C™EM sych thatspan{U} = KT,(C,,V). Eg. (13) means thapan{S®} is
constructed by the subspace iteration methof @fith the input matrixU.

Here, we describe a general result of the subspace iteration method. With respect to the
subspace constructed by the subspace iteration method

Vi = AV, Ve (14)
for a diagonalizable matrix, we have the following lemma, see e.g., [9, Theorem 5.2]

Lemma 1. LetV, be the matrix obtained from the subspace iteration method (14) for a diago-
nalizable matrix4d € C*", whereAd = XUAX, X = [z, @o, ..., x,], A = diag(A1, Ag, ..., \n).
Assume that the eigenvalues are ordered in decreasing order of magnkude |\;;1].
Defining P} and P,, to be the orthogonal projectors onto the subspagesi{V;} and
span{x, s, ..., T, }, respectively.

Assume that;, such thatP,,V} is full rank. Then for each eigenvectoy,: = 1,2,...,m,
there exists a unique vectey in the subspacepan{V;} such thatP, s; = x;. Moreover, the
following inequality is satisfied
¢
m+1

(7 = POl < af |22

Y

wherea is some constant independent@and 5 = ||x; — s;|2.
Proof. See e.g., [9, Theorem 5.2]. O

In [9, Theorem 4.6], a result of an accuracy analysis of the Rayleigh-Ritz procedure for
solving standard eigenvalue problems is given. We can extend it for solving generalized
eigenvalue problems as follows:



Lemma 2. Let(\;, ;) be the exact eigenpairs of the matrix pericil B). DefiningP), to be
the orthogonal projector onto the subspaéeThen, the residual norm of the pairs(0f;, ;)
for the linear operatorsdy, := Py, APy, By := Py, BP), satisfy

[(Ay = XiBy)xill2 < ([(I = Py)zil|2,
wherey = [[Py(A = AB)(I — Py)|2.
Proof. From the definition of4,,, By,, we have

[(Ay = AiBy)zills = [[Pv(A—NB)(zi — (I — Py)zi)|2
= [[Pv(A—=NB)(I —Py)zi|2
= [[Pv(A=XNB)I —Pv)(I — Pv)zill2
< AT = Pv)zill2.

Therefore Lemma 2 is proven. ]

Recall that the block SS-RR method with the numerical integration and the iteration tech-
nique (Algorithm 3) is based on the Rayleigh-Ritz procedure witm{ S’} constructed by
Eq. (13). Therefore, applying Lemmas 1 and 2 to Eq. (13), we provide the following theorem
with respect to the accuracy of the block SS-RR method (Algorithm 3).

Theorem 2. Assume thatf()\;) are ordered in decreasing order of magnitugg\;)| >
|f(M\is1)]. DefiningP¥) and Py, to be the orthogonal projectors onto the subsp&pe&{§(f)}
andspan{xy, x, ..., Ty}, respectively.

Assume thal/ such thatP;,,U is full rank. Then for each eigenvectoy,i = 1,2,..., LM,
there exists a unique vectey in the subspack, (C,., V') such thatPy,s; = x;. Then, the
residual norm of the pairs of);, x;) for the linear operatorsA¥) := POAP® BO .=

PO BPE satisfy
J4

Y

1(AD — X, B, ||, < By '%

wherea is some constant independentQrs = ||z; — s,||2, andy = ||P©O(A — \;B)(I —
PO)l2.

Proof. From Lemmas 1 and 2, we have

14

I(A® = ABO)ayll, < 4|1 = PO)ai]l2 < 0y ‘ f(;f%“)

Therefore Theorem 2 is proven. O]

Here we note thaty is bounded from above by the norms of the matrices such that
v < ||All2 + |\i]|| Bll2, and 8 strongly depends on the input subspapen{U}. Because
of span{U} = K (C,, V), if V € C"*¥ such thatpan{V'} equally contains the compo-
nents of the eigenvectors corresponding i@ (2, e.g., the random matrix, and the regian
is not so large, then it is expected that@alave almost the same value fore Q.

Theorem 2 means that the accuracy of the block SS-RR method in terms of the residual
2-norm||(A® — \;B®)x||, is evaluated by the ratio of the magnitude of the filter function
|f(N\;)| to the (LM + 1)-th largest ond f(Ara+1)|- The magnitude of the filter function
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The magnitude of the filter function If(A)l

Fig. 1: The magnitude of the filter functidyi(\)| of the N-point trapezoidal rule withlv =
16, 32, 64 for the circle regiorf) with the centep = 0 and radiugy = 1.

| f(\;)] of the N-point trapezoidal rule withvV = 16, 32, 64 for the circle regior2 with the
centerp = 0 and radiusy = 1 can be shown in Fig. 1. The filter function hg&\)| ~ 1
inside the region2, | f(\))| ~ 0 far from the region an@ < |f(\)| < 1 outside but near the
region.

Therefore we observe from Theorem 2 that, using enough subspack/Mizaich that
|f(Aars1)|f =~ 0, the block SS-RR method achieves high accuracy for the target eigenpairs
(the eigenvalue is insid®) even if some eigenvalues exist outside, but near, the region.

3.3 Experimental evaluation of the accuracy analysis

In this subsection, we experimentally evaluate the results of Theorem 2. We apply the block
SS-RR method (Algorithm 3) to the model problem

ACL'Z' = )\BCBZ,
A = diag(0.01,0.11,0.21,...,9.91) € R0 B — [, (15)
A; € Q : circle with center p = 0,radius v =1,

and evaluate its accuracy. Here, for the model problem, the number of eigenvalues located in
2 ism = 10 and outside nearest eigenvalué i3l.

We evaluate the relation of the accuracy with the number of subspacé &izend the
number of iteratior/. For the first example to evaluate the relation with/, we fixed
the parameters a6 = 10, N = 32,/ = 1, and tested four cased = 1,2,3,4 (LM =
10, 20, 30, 40). For the second example to evaluate the relation tyitve fixed the parameters
asL =5, M = 3, N = 32, and tested four casés= 1, 2, 3, 4. For these examples we set the
guadrature points as follows:

z; = cos(6;) +1isin(d;), 6; = %T (j - %) , j=12... N.
The algorithm was implemented in MATLAB R2014a. The input matrixwvas set as a
random matrix generated by the Mersenne Twister in MATLAB, and each linear system was
solved by the MATLAB command\"”.
The numerical results are presented in Fig. 2 and Table 1. We show the residual 2-norm
|rilla = ||Ax; — \;Ba;|2 with L = 10,M = 4, N = 32,¢ = 1 in Fig. 2(a), and with
L=5 M =3,N =32/¢=4inFig. 2(b), respectively. We also show the relationship of the

9



filter function
residual 2-norm  []

filter function

residual 2-norm  [] \

3 S
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-15
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A A

@L=10,M =4,N=32,(=1 ()L =5M=3N=232/(=4

Fig. 2: The accuracy of the block SS-RR method and the filter function.

Table 1: Relationship of the accuracy of the block SS-RR method ithand/.

(a) Relationship withL.M (¢ = 1)

M (LM) |f()‘LM+1)| miny, eq ||7“z||2 maxy,;eq ||”“z||2
1(10) 421x107" 176 x1072  1.34x 107!
2(20) 1.98x107' 229 x107'° 211 x 107°
3(30) 5.03x107% 144x107® 1.20x 1071
4(40) 5.20x 1078 203 x 1071  3.46 x 1071

(b) Relationship withY (LM = 15)
|fOem)]” minyeo [|7i]lo maxy,eq [[rill
241 x 107" 168 x1077 7.07x10°°
5.80 x 107 236 x 1078 1.32x107%
1.40 x 10720 1.67 x 10716 1.37 x 1071°
3.36 x 10727 266 x 10716 7.78 x 10716

A WN RIS

minimum and the maximum values [pf; || in \; € Q with LM in Table 1(a) and witH in
Table 1(b), respectively.
Fig. 2(a) and Table 1(a) show thain,,cq, ||7;||» has approximately the same order with
|f(Aza+1)|, @and the difference betweenin,, cq ||7;||2 andmax,,cq ||7;]|2 are not so large.
We can also observe from Fig. 2(b) and Table 1(b) thal, for \; € Q2 decrease exponen-
tially with increasing/, although they are bounded by the machine epsitoh0'°. As a
result, the block SS-RR method with enough subspacelsiZesuch thal f(Apx41)|¢ ~ 0
shows high accuracy independent on the eigenvalues outside but near the region. This means
that Theorem 2 is experimentally supported by these results.
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4 Accuracy analysis when a solution of a linear system is
contaminated

In this section, we analyze the accuracy of the block SS-RR method with the numerical
integration (Algorithm 2) when the solution of the linear system in Algorithm 2 step 1 is
contaminated, and experimentally evaluate the results of the accuracy analysis.
Here we consider the case that the solution of the linear systgixtlajuadrature point
is contaminated as follows:
(2yB—A)"'BV + E, (16)

whereE € C"*F is an error matrix ofank(E) = L’. Note that here we have no assumption
on the norm of the error matrik.

4.1 Accuracy analysis on the block SS-RR method with a contaminated
solution of the linear system

By the contamination of the solution of the linear system (16), the matroan be replaced
as

N
Sy = ijzf {(z;B—A)"'BV +§;;E},

i=1
= S+ wj/zjliE,

wherej,; denotes the Kronecker delta. Therefore, the mattrof (6) is also replaced by
S=8+E, E:=wBuwzkE,.. . wz)lE, (17)

where E' € C"™*LM andrank(F’) = L'. Then, the subspacgan{S'} is used for the

Rayleigh-Ritz procedure of the block SS-RR method with the contaminated solution (16).
Here, we provide a general result of the accuracy analysis of the Rayleigh-Ritz procedure

using the contaminated subspapen{1”’} := span{V + E'} with a low rank error matrix,

whereV, E € C™™ andrank(E) = m’/ < m. Let B, € C*™™ be a matrix whose columns

are basis vectors @pan{ E'}. Then, there exists a permutation matfixc R™*" such that

EP = Ey|Ey, Ey,], (18)
whereEy, € C™*™ is a nonsingular matrix andy, € C™ (™) We also let
VP =V, V], Vi=V,—ViE By, (19)
whereV; € C™™ V,, V € C™(m=m") Then we have the following lemma.

Lemma 3. Let (\;, z;) be the exact eigenpairs of the matrix periell, B). Defining?’ and
P to be the orthogonal projectors onto the subspages:{V’} and span{V} C span{V'},
respectively. Then, the residual norm of the pair$)of x;) for the linear operatorsip :=
P'AP’, Bp: := P'BP’ satisfy

1(Apr = XiBp)aill2 < YII(T = P)aile,
wherey' = [|P'(A — \B)(I —P')| .

11



Proof. From the Eq. (18) and (19), we have

span{V'} = span{(V + E)P}

span{[Vi + Ev Ey,, Vs + Ey Ey,]}

span{[V; + Ey Ey,, Vo — V1E§11Ey2]}

span{ Vs — VlE;llEyQ}

span{V'}. (20)

IO

From Lemma 2 and (20),
1(Apr = XiBpi)ailla < 7' [(I = Paillz < 7|1 = P
is satisfied. Therefore Lemma 3 is proven. O

Recall that the block SS-RR method (Algorithm 2) with the contaminated solution (16) is
based on the Rayleigh-Ritz procedure vwmn{S’} = span{S + E'} defined by Eq. (17).
Let By € C™ be a matrix whose columns are the basis vectokpoifi{ £}. Then, since
rank(F) = L/, there exists a permutation matiixe R-*L such that

EP = Ey|Ey,, Ey,],

where By, € CY*! is a nonsingular matrix andy, € CY*(~L)  Defining P/ :=
diag(P, P, ..., P) € REMXEM ‘then we have

E'P' = Ey[Ey., Ey, ],
whereE}, € CF'*F andE}, € CL"*(M=LY) can be written by
Egﬁ = wy by,
Eg;Q = [wj/EYQ,wj/zj/Eyl,wj/zj/EYQ, .. w]/z y 1Ey1,wj/2 ) 1Ey2}
because of the definition df’ (17). We also let
S'P =55, S:=Sy— S\ BBy,
UP = [Ul,UQ], U= Ug—UlEglEgé,

whereS;, Uy € C™, 8}, 5,U,, U € CxEM-1),
Here, from the relationships’ = S + E' = FU + E’, we have

S=FU, F:=Q.f(A)QY (21)

Therefore, from Lemmas 1 and 3, we provide the following theorem with respect to the
accuracy of the block SS-RR method with the contaminated solution (16).

Theorem 3. Assume thaff();) are ordered in decreasing order of magnitugé&\;)| >
|f(Aix1)]. DefiningP’, P and Pry_1 to be the orthogonal projectors onto the subspaces
span{5'}, span{S} andspan{x;, s, ..., @1}, respectively.

Assume that/ such thatP; ;.U is full rank. Then for each eigenvectar,i =
1,2,...,LM — L', there exists a unique vectas in the subspacepan{f]} C span{U}

12



such thatP;,,_;/s; = x;. Then, the residual norm of the pairs ©X;, x;) for the linear

operatorsAp: := P'AP’, Bp: := P'BP’ satisfy

S(ALa—r41)
()

wherea’ is some constanty’ = ||x; — s;||2, andy’ = ||P'(A — \;B)(I — P')||o.

|(Apr — NiBpr)xi|l2 < o/ 59

Y

Proof. Applying Lemma 1 to Eq. (21) and also applying Lemma 3 to Eq. (17), we have
JALav-r41)
J(N)

Therefore Theorem 3 is proven. ]

|(Ap — NiBp)ail|a < 7'||(I — P)aills < o/ B

Theorem 3 means that the accuracy of the block SS-RR method with the contaminated
solution, in terms of the residual 2-noiA» — \; Bp:)x;||2, is evaluated by the ratio of the
magnitude of the filter functionf(\;)| to the(LM — L' + 1)-th largest onef(Apy—r/41)]-
Therefore we observe that, using the enough subspacé &izgeuch that f (A 141)| =~ 0,
the block SS-RR method achieves high accuracy for the target eigenpairs (the eigenvalue is
inside?) even if the solution of the linear system is contaminated by a low rank error matrix
(16).

We note that Theorem 3 can be naturally extended in the case when some solutions of the
linear systems in different quadrature points are contaminated.

4.2 Further analysis on the results of Theorem 3

In Theorem 3 is bounded above such that< ||Al|, + |\;||| B]|2 just asy in Theorem 2.
In this subsection, we consider the magnitudgsoin Theorem 3 for each\; € (2, which
strongly depends on the input subspaeen{U}. LetV P = [V}, V4], whereV; € C**%" and
V, € C (L) 'thenU,, U, can be rewritten by

Ul = ‘/17
Uy = [Vo, Vi, CoVa, ..., CY 1V, GV
From the definition of/ we have
span{U} = span{U, — U By 'Ey,}
= span{Ug — Ul(Wj/Eyl)_l[Wj/EYQ, ce ,wj/Z]]-‘/J_lEyl,wj/Z]]y_lEyz]}
= span{[Vs, .V, C.Va, ..., CM71V, OM=1Y)
—VAIEY, Bvy, 21, 2y By By, o, 200 L 20 T B By}

= span{[Wy, Wy}, (22)
wherelW; e C<F'(M=1) gandW, € C**(E~LIM gre defined by
Wi = [(Cr— 2z D)V, (C2 = 25 D)Wy, (G = 20 v,
Wy = [Va=VAEY By, GV — 2y VIEy By, ..., CYM ™ Wa — 20TV E By ).

We can observe from Eq. (22) and the definition(f := QTATQE that, subspaces
span{W;} and alsospan{U} weakly contain the components of the eigenvectors corre-
sponding to the eigenvalues near the contaminated quadrature paipt Therefores’
may become larger fox; nearz; than others, specifically for the caseldf= L.
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Fig. 3: The accuracy of the block SS-RR method when the solution of the linear system is
contaminated fol, = 10, L' = 10, M = 4, N = 32.

4.3 Experimental evaluation of the accuracy analysis

In this subsection, we experimentally evaluate the results of Theorem 3 and of the analysis in
Section 4.2. We apply the block SS-RR method (Algorithm 2) with the contaminated solution
(16) to the model problem (15), and evaluate its accuracy.

We evaluate the relation of the accuracy with the number of subspacé &izand the
contaminated quadrature point. To evaluate the relation of the accuracy, we fixed the parame-
tersasl = 10, L' = 10, N = 32, and tested four caség = 1,2, 3,4 (LM = 10, 20, 30, 40).

The contaminated quadrature point is also tested two cases:

7z =cos (&) +isin (L)  ~ 0.9956 + 0.0980i,
Zj/ =

216 = cos (5F) +isin (3F) ~ —0.9956 + 0.0980i,

wherez; is near some eigenvalues(in e.g.,A\g = 0.91, on the other hand; is far from all
eigenvalues if2. The error matrixt’ was set as a different random matrix frdm and also
was generated by the Mersenne Twister in MATLAB. Other conditions are the same as the
experiment in Section 3.3.

The numerical results are presented in Fig. 3 and Table 2. We show the residual 2-norm
||7’Z‘||2 = ||A331 — /\szz||2 with L = 10, L' = 10, M = 4,N = 32, Zj = 21 in F|g S(a), and
with L = 10, L' = 10, M = 4, N = 32,z; = z in Fig. 3(b), respectively. We also show
the relationship of the minimum and the maximum value§nf, in \; € Q with LM for
zy = z in Table 2(a) and foe; = z; in Table 2(b), respectively.

Fig. 3 and Table 2 show thatin ||r; ||, have approximately the same order Wit 11)]-
In this regard, however, far;, = z;, the difference betweenin), ¢, ||7;]|2 andmaxy,cq ||7:]2
are larger than fot;, = z4; see Table 2. This is based on the fact {hat|, corresponding to
A; hear the contaminated quadrature poeintire larger than others; see Fig. 3(a). As aresult,
for the case that; is far from all \; € 2, the block SS-RR method with enough subspace
size LM shows high accuracy even if the solution of the linear system is contaminated. This
means that Theorem 3 and the analysis in Section 4.2 are experimentally supported by this
results.
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Table 2: Relationship of the accuracy of the block SS-RR methodMithwhen the solution
of the linear system is contaminated.

(@) z; is contaminated
M (LM)  [f(Aem—r41)] minyeq [Irilla maxy,eq [[7ill2
1(10) 1.00 x 10° 5.32 x 1071 2.84 x 10°
2(20) 421 x107' 1.84x1072 263 x 10!
3(30) 1.98x107'0 243x107' 1.63x 1078
4(40) 5.03x107'% 657 x 107 1.91x 1073

(b) z16 Is contaminated
M (LM) |f(Apm—r41)] minyeq ||rille maxyeq |72
1(10) 1.00 x 10° 5.54 x 1071 2.89 x 109
2(20) 421 x107Y 411 x107%2 484 x 107!
3(30) 1.98x107'° 7.05x107  4.96x 107?
4(40) 5.03x107% 371 x 107 251 x 107

5 Conclusions

In this paper, we investigated the accuracy of the block SS-RR method with the numerical
integration. Then we provided two theorems for the accuracy analysis with the iteration
technique (Theorem 2) and for the accuracy analysis with the contaminated solution of the
linear system (Theorem 3). From the results of our accuracy analyses, we concluded that
the block SS-RR method with enough subspace size can achieve high accuracy for target
eigenpairs even if some eigenvalues exist outside but near the region, and also even if the
solution of the linear system is contaminated. This also means that the block SS-RR method
has error resilience property, and will lead to an algorithm-based fault tolerance technique
different from checkpoint restart techniques and redundant computations.

In future work, we will analyze for the case of non-diagonalizable matrix pencils. We
will also analyze the accuracy of the Hankel type of the contour integral based eigensolver.
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