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Abstract. In this paper, we investigate the restarted Krylov subspace methods, as typified by
the GMRES(m) method and the FOM(m) method, for solving non-Hermitian linear systems. We
have recently focused on the restart of the GMRES(m) method and proposed the extension of the
GMRES(m) method based on the error equations. The main purpose of this paper is to apply the
extension to other restarted Krylov subspace methods, and propose a specific restart technique for
the restarted Krylov subspace method. The specific restart technique is named as a Look-Back-
type restart, and is based on an implicit residual polynomial reconstruction via the initial guess. The
comparison analysis based on the residual polynomials and some numerical experiments indicate that
the Look-Back-type restart achieves more efficient convergence results than the traditional restarted
Krylov subspace methods.
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1. Introduction. In this paper, we consider solving large and sparse linear sys-
tems of the form:

Ax = b, A ∈ Cn×n, x, b ∈ Cn,(1.1)

where the coefficient matrix A is assumed to be non-Hermitian and nonsingular. These
linear systems often arise from the discretization of partial differential equations in
the fields of the computational science and engineering.

Direct methods such as the LU decomposition are generally selected in terms of
accuracy and stability for the small and dense coefficient matrix A. On the other hand,
for the case where the coefficient matrix A is large and sparse, iterative methods are
widely used because of their computational costs and storage requirements. Recently,
the Krylov subspace methods are recognized as standard algorithms for large, sparse
and non-Hermitian linear systems (1.1); for details see [16,21].

In this paper, we investigate the restarted Krylov subspace methods, as typified by
the GMRES(m) method [17] and the FOM(m) method [15], for solving non-Hermitian
linear systems (1.1). The Arnoldi-based Krylov subspace methods have some difficul-
ties in terms of the computational costs and storage requirements due to the long-term
recurrence. The (two-sided) Lanczos-based Krylov subspace methods also have some
difficulties in terms of the pseudo convergence due to accumulations of the round-off
errors. In order to remedy these difficulties, the restart is often applied to the Krylov
subspace methods.

Letm be the restart frequency, and x
(1)
0 be the initial guess of the 1st restart cycle.

Then the ℓth restart cycle of the restarted Krylov subspace methods are operated as
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follows:
1. Solve (approximately) Ax = b by m iterations of some Krylov subspace

method with the initial guess x
(ℓ)
0 , and get the approximate solution x(ℓ).

2. Update the initial guess of the (ℓ+ 1)th restart cycle: x
(ℓ+1)
0 := x(ℓ), and go

to the (ℓ+ 1)th restart cycle.
The restart remedies the difficulties of the Krylov subspace methods due to

the long-term recurrence and/or accumulations of the round-off errors; however, the
restart generally slows their convergence. Therefore, in order to improve Step 1, sev-
eral improvement techniques have been proposed, such as the adaptive precondition-
ing techniques based on the deflation [1,6,8], the techniques based on the augmented
Krylov subspace [2,4,11–13] and the techniques based on adaptively determining the
restart frequency m [3, 14,19,22].

On the other hand, we focused on the update of the initial guess in each restart
cycle (Step 2), then we recently proposed the extension of the GMRES(m) method [9].
It is also shown that this is a natural extension in terms of the error equations and the
iterative refinement scheme, and it has high potential for more efficient convergence
than the traditional GMRES(m) method [9]. In this regard, however, the convergence
of the extension of the GMRES(m) method did not analyzed enough, and specific
algorithms for efficient convergence still have not proposed.

The main purpose of this paper is to apply the extension to other restarted Krylov
subspace methods, and propose a specific restart technique for the restarted Krylov
subspace method. The specific restart technique is named as a Look-Back-type restart,
and is based on an implicit residual polynomial reconstruction via the initial guess.
The performance of the Look-Back-type restart is evaluated by a comparison analysis
based on the residual polynomials and some numerical experiments.

This paper is organized as follows. In Section 2, we briefly describe a general
form of the restarted Krylov subspace methods. In Section 3, from the analysis
based on the residual polynomials, we propose a Look-Back-type restart based on an
implicit residual polynomial reconstruction. The reconstructed residual polynomials
are compared with the traditional restarted Krylov subspace methods in Section 4.
In Section 5, the performance of the Look-Back-type restart is evaluated by some
numerical experiments. Our conclusions are summarized in Section 6.

Throughout this paper, let V ,W be the subspaces, then V +W denotes the sum
of the subspaces of V ,W , i.e., V + W := {v +w|v ∈ V ,w ∈ W }.

2. Restarted Krylov subspace methods. We have the following theorem for
the exact solution of the linear systems (1.1); see e.g., [16].

Theorem 2.1. Let x0 be an initial guess and r0 := b−Ax0 be the corresponding
initial residual, respectively. We also let d be the grade of r0 with respect to A, i.e.,

d := d(A, r0) := min{k|Pk(A)r0 = 0, Pk(λ) ∈ Pk, Pk(0) = 1},

where Pk is the set of k-degree polynomials. Then the exact solution x∗ := A−1b
satisfies the following relation:

x∗ ∈ x0 + Kd(A, r0), Kd(A, r0) := span{r0, Ar0, . . . , A
d−1r0}.

For a general property of the Krylov subspaces, we can also derive the following
lemma.
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Lemma 2.2. Let A ∈ Cn×n,u,w ∈ Cn. Then, for any v ∈ Ks+1(A,u),

w + Kt(A,v −Aw) ⊂ Ks+t(A,u)(2.1)

is satisfied if and only if

w ∈ Ks(A,u).(2.2)

We assume, however, that s+ t < d, where d := d(A,u) is the grade of u with respect
to A.

Proof. First, we prove that (2.1) is a necessary condition for (2.2). If w ∈
Ks(A,u), then v −Aw ∈ Ks+1(A,u) for any v ∈ Ks+1(A,u). This leads to

Kt(A,v −Aw) ⊂ Ks+t(A,u).

Next, we prove that (2.1) is a sufficient condition for (2.2). From (2.1), we have

w ∈ Ks+t(A,u),(2.3)

Kt(A,v −Aw) ⊂ Ks+t(A,u).(2.4)

Then, we introduce a condition for the vector w from (2.4), then consider the inter-
section with (2.3).

Since a general property of the Krylov subspaces Kk(A,x), i.e.,

Kk(A,x+ y) ⊂ Kk(A,x) + Kk(A,y),

we have

Kt(A,Aw) ⊂ Kt(A,v) + Kt(A,v −Aw).(2.5)

On the other hand, for any v ∈ Ks+1(A,u), we also have

Kt(A,v) ⊂ Ks+t(A,u).(2.6)

Then, substituting (2.4) and (2.6) in (2.5), the relation

Kt(A,Aw) ⊂ Ks+t(A,u)

is derived. This leads to the following condition for the vector w:

Atw ∈ Ks+t(A,u).(2.7)

We then consider the intersection of (2.3) and (2.7). From (2.3), the vector w
can be written by the following polynomial form:

w =
s+t−1∑
i=0

ρiA
iu

(
=

s−1∑
i=0

ρiA
iu+

s+t−1∑
i=s

ρiA
iu

)
.

Substituting the polynomial form in (2.7), we get

ρs = ρs+1 = · · · = ρs+t−1 = 0.

This means the vector w satisfies

w =
s−1∑
i=0

ρiA
iu ∈ Ks(A,u).

Therefore, it is true that (2.1) is a sufficient condition for (2.2). Thus Lemma 2.2 is
proved.

In what follows, based on Theorem 2.1 and Lemma 2.2, we consider a relationship
among the sequence of the iterative solutions constructed from the Krylov subspaces
and describe a general form of the restarted Krylov subspace methods.
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2.1. A relationship among the sequence of the iterative solutions con-

structed from the Krylov subspaces. For ℓ = 1, 2, . . . , let x
(ℓ)
0 be a sequence of

initial guesses, and r
(ℓ)
0 := b − Ax

(ℓ)
0 be the sequence of the corresponding residual

vectors, respectively. Applying the sequence of m(ℓ) dimensional Krylov subspaces

Km(ℓ)(A, r
(ℓ)
0 ) for iterative solutions of the linear systems (1.1), iterative solutions

x(ℓ) can be expressed as

x(ℓ) = x
(ℓ)
0 + z(ℓ), z(ℓ) ∈ Km(ℓ)(A, r

(ℓ)
0 ), ℓ = 1, 2, . . . ,(2.8)

where the vectors z(ℓ) are designed by some condition, e.g., the minimal residual
condition, the Ritz-Galerkin condition or the Petrov-Galerkin condition.

Note that in the case of

x
(ℓ+1)
0 = x(ℓ), ℓ = 1, 2, . . . ,(2.9)

if one designs the vector z(ℓ) using the minimal residual condition and set m(ℓ) = m,
then the sequence of x(ℓ) is just the sequence of the approximate solutions of the
GMRES(m) method. In this case, the vectors x(ℓ) have

x(ℓ) ∈ x
(1)
0 + Km(A, r

(1)
0 ) + Km(A, r

(2)
0 ) + · · ·+ Km(A, r

(ℓ)
0 )

= x
(1)
0 + Km×ℓ(A, r

(1)
0 ).

This is a fortunate property for solving the linear systems because of Theorem 2.1.
Here, let us consider a more general case of

x
(ℓ+1)
0 = x(ℓ) + y(ℓ+1), ℓ = 1, 2, . . . .(2.10)

Then in this section, we discuss a condition for the vector y(ℓ+1) in which all the
vectors x(ℓ) on the affine space:

x(ℓ) ∈ x
(1)
0 + KM(ℓ)(A, r

(1)
0 ), M (ℓ) =

ℓ∑
i=1

m(i), ℓ = 1, 2, . . . ,

as well as the case of (2.9).

Lemma 2.3. For any z(ℓ) ∈ Km(ℓ)(A, r
(ℓ)
0 ) and z(ℓ+1) ∈ Km(ℓ+1)(A, r

(ℓ+1)
0 ),

x(ℓ+1) ∈ x
(ℓ)
0 + Km(ℓ)+m(ℓ+1)(A, r

(ℓ)
0 )

is satisfied if and only if

y(ℓ+1) ∈ Km(ℓ)(A, r
(ℓ)
0 ).

We assume, however, that m(ℓ) + m(ℓ+1) < d, where d := d(A, r
(ℓ)
0 ) is the grade of

r
(ℓ)
0 with respect to A.

Proof. From the definition of the vector x(ℓ+1) and r
(ℓ+1)
0 = r(ℓ) −Ay(ℓ+1),

x(ℓ+1) ∈ x
(ℓ)
0 + Km(ℓ)(A, r

(ℓ)
0 ) + y(ℓ+1) + Km(ℓ+1)(A, r(ℓ) −Ay(ℓ+1)),

for any z(ℓ) ∈ Km(ℓ)(A, r
(ℓ)
0 ). Here, from Lemma 2.2,

y(ℓ+1)+Km(ℓ+1)(A, r(ℓ)−Ay(ℓ+1)) ⊂ Km(ℓ)+m(ℓ+1)(A, r
(ℓ)
0 ) ⇔ y(ℓ+1) ∈ Km(ℓ)(A, r

(ℓ)
0 ),
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Algorithm 1 A general form of the restarted Krylov subspace method

1: Choose the initial guess x
(1)
0

2: For ℓ = 1, 2, . . . , until convergence Do:
3: Set the restart frequency m(ℓ) and the KS(ℓ) method
4: Solve (approximately) Ax = b by m(ℓ) iterations of the KS(ℓ) method with the

initial guess x
(ℓ)
0 , and get the approximate solution x(ℓ)

5: Set the vector y(ℓ+1) ∈ KM(ℓ)(A, r
(1)
0 ), where M (ℓ) =

∑ℓ
i=1 m

(i)

6: Update the initial guess x
(ℓ+1)
0 := x(ℓ) + y(ℓ+1)

7: End For

because of r(ℓ) ∈ Km(ℓ)+1(A, r
(ℓ)
0 ) for any z(ℓ) ∈ Km(ℓ)(A, r

(ℓ)
0 ). Therefore, also using

the following obvious relation:

Km(ℓ)(A, r
(ℓ)
0 ) ⊂ Km(ℓ)+m(ℓ+1)(A, r

(ℓ)
0 ),

Lemma 2.3 is proved.

Proposition 2.4. For any z(ℓ) ∈ Km(ℓ)(A, r
(ℓ)
0 ), ℓ = 1, 2, . . .,

x(ℓ) ∈ x
(1)
0 + KM(ℓ)(A, r

(1)
0 ), ℓ = 1, 2, . . . ,

is satisfied if and only if

y(ℓ+1) ∈ KM(ℓ)(A, r
(1)
0 ), ℓ = 1, 2, . . . ,

where M (ℓ) =
∑ℓ

i=1 m
(i). We assume, however, that M (ℓ) < d, where d := d(A, r

(1)
0 )

is the grade of r
(1)
0 with respect to A.

Proof. Proposition 2.4 is proved by using Lemma 2.3 recursively, starting from
ℓ = 1.

2.2. A general form of the restarted Krylov subspace method. We con-
sider the sequential process which refines the approximate solution of the linear system
(1.1) by Eqs. (2.8) and (2.10). This sequential process can be regarded as a general
form of the restarted Krylov subspace method; see Algorithm 1, which can dynami-
cally set the restart frequency m(ℓ) and the using Krylov subspace method KS(ℓ) in
each restart cycle, and which also update the initial guess by Eq. (2.10). Note that
the algorithms of the extension of the GMRES(m) method proposed in [9] can be
introduced from the Algorithm 1 [9, Algorithm 3.2].

In this regard, however it is expected that the approximate solution x(ℓ) obtained
by Algorithm 1 satisfies

x(ℓ) ∈ x
(1)
0 + KM(ℓ)(A, r

(1)
0 ),

because of Theorem 2.1. Therefore, in this paper, we impose

y(ℓ+1) ∈ KM(ℓ)(A, r
(1)
0 )

on the vector y(ℓ+1) in each restart cycle of Algorithm 1; see Proposition 2.4.
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3. A Look-Back-type restart. In this section, from the analysis based on
the residual polynomials, we propose a Look-Back-type restart based on an implicit
residual polynomial reconstruction via the initial guess.

In Section 3.1, we analyze residual polynomials of the general form of the restarted
Krylov subspace method (Algorithm 1) and describe an implicit residual polynomial
reconstruction via the initial guess. In Section 3.2, we propose a Look-Back-type
restart based on an implicit residual polynomial reconstruction, and its implementa-
tion details are shown in Section 3.3.

3.1. An implicit residual polynomial reconstruction via the initial guess.
Recall that for the general form of the restarted Krylov subspace method (Algo-
rithm 1), the initial guess and the corresponding residual are updated by

x
(ℓ+1)
0 = x(ℓ) + y(ℓ+1), r

(ℓ+1)
0 = r(ℓ) −Ay(ℓ+1), y(ℓ+1) ∈ KM(ℓ)(A, r

(1)
0 ),(3.1)

in each restart cycle. Here, let us focus on the residual vector r(ℓ+1) of the (ℓ+ 1)th
restart cycle, and consider the corresponding residual polynomial.

Because of Proposition 2.4, we have r(ℓ) ∈ KM(ℓ)+1(A, r
(1)
0 ). Thus, there exists a

polynomial Q
(ℓ)

M(ℓ)(λ) ∈ PM(ℓ) such that

r(ℓ) = Q
(ℓ)

M(ℓ)(A)r
(1)
0 , QM(ℓ)(0) = 1.

From this observation, let P
(ℓ+1)

m(ℓ+1)(λ) ∈ Pm(ℓ+1) , P
(ℓ+1)

m(ℓ+1)(0) = 1 be the residual polyno-

mial corresponding to m(ℓ+1) iterations of the KS(ℓ+1) method of the (ℓ+1)th restart

cycle, then the residual vector r(ℓ+1) can be shown by using Q
(ℓ)

M(ℓ)(λ) like

r(ℓ+1) = P
(ℓ+1)

m(ℓ+1)(A)r
(ℓ+1)
0

= P
(ℓ+1)

m(ℓ+1)(A)(r
(ℓ) −Ay(ℓ+1))

= P
(ℓ+1)

m(ℓ+1)(A)(Q
(ℓ)

M(ℓ)(A)r
(1)
0 −Ay(ℓ+1)).

For any vectors y(ℓ+1) ∈ KM(ℓ)(A, r
(1)
0 ), from Proposition 2.4, there is also a polyno-

mial Q̃
(ℓ)

M(ℓ)(λ) ∈ PM(ℓ) , Q̃
(ℓ)

M(ℓ)(0) = 1 such that

Q̃
(ℓ)

M(ℓ)(A)r
(1)
0 = Q

(ℓ)

M(ℓ)(A)r
(1)
0 −Ay(ℓ+1).(3.2)

Therefore, the residual vector r(ℓ+1) can be rewritten as follows:

r(ℓ+1) = Q
(ℓ+1)

M(ℓ+1)(A)r
(1)
0 = P

(ℓ+1)

m(ℓ+1)(A)Q̃
(ℓ)

M(ℓ)(A)r
(1)
0 .

As a consequence, we can observe that the vector y(ℓ+1) of the general form of the
restarted Krylov subspace method reconstructs the residual polynomial by Eq. (3.2).
In this paper we call this an implicit residual polynomial reconstruction via the initial
guess.

3.2. Proposal for a Look-Back-type restart. Determining the reconstructed

polynomial Q̃
(ℓ)

M(ℓ)(λ) particularly, the corresponding vector y(ℓ+1) can be computed
uniquely as follows:

y(ℓ+1) = A−1
(
Q

(ℓ)

M(ℓ)(A)− Q̃
(ℓ)

M(ℓ)(A)
)
r
(1)
0 ,(3.3)
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from Eq. (3.2).

In terms of computational cost, the polynomial Q̃
(ℓ)

M(ℓ)(λ) should be determined
such that Eq. (3.3) is easy to compute. From this observation, in this paper, we

express the reconstructed residual polynomial Q̃
(ℓ)

M(ℓ)(λ) as the linear combination

of the current residual polynomial Q
(ℓ)

M(ℓ)(λ) and at most M (ℓ)-degree polynomial

R
(ℓ)

M(ℓ)(λ) ∈ PM(ℓ) , R
(ℓ)

M(ℓ)(0) = 1, i.e.,

Q̃
(ℓ)

M(ℓ)(λ) := τ (ℓ)Q
(ℓ)

M(ℓ)(λ) + (1− τ (ℓ))R
(ℓ)

M(ℓ)(λ),

where τ (ℓ) ∈ C. Then, we define the polynomial R
(ℓ)

M(ℓ)(λ) by using the dth previous

polynomial before Q
(ℓ)

M(ℓ)(λ) as follows:

R
(ℓ)

M(ℓ)(λ) :=


Q

(ℓd)

M(ℓd)(λ) (d : even)

Q̃
(ℓd)

M(ℓd)(λ) (d : odd)

, ℓd :=

 ℓ− d
2 (d : even)

ℓ− d+1
2 (d : odd)

(3.4)

with the (fixed) positive integer parameter d ∈ N. Here we note that one can naturally
extend it by adaptively determining the parameter d in each restart cycle.

In the case of the definition (3.4), Eq. (3.3) can be rewritten by

y(ℓ+1) = (1− τ (ℓ))A−1
(
Q

(ℓ)

M(ℓ)(A)−R
(ℓ)

M(ℓ)(A)
)
r
(1)
0 ,(3.5)

and we have (
Q

(ℓ)

M(ℓ)(A)−R
(ℓ)

M(ℓ)(A)
)
r
(1)
0 =

{
r(ℓ) − r(ℓd) (d : even)

r(ℓ) − r
(ℓd)
0 (d : odd)

.

Let ∆x(ℓ) and ∆r(ℓ) be

∆x(ℓ) :=

{
x(ℓ) − x(ℓd) (d : even)

x(ℓ) − x
(ℓd)
0 (d : odd)

, ∆r(ℓ) :=

{
r(ℓ) − r(ℓd) (d : even)

r(ℓ) − r
(ℓd)
0 (d : odd)

,

respectively, then from ∆r(ℓ) = −A∆x(ℓ), Eq. (3.5) can be computed by

y(ℓ+1) = µ(ℓ)∆x(ℓ),(3.6)

where µ(ℓ) := τ (ℓ) − 1 ∈ C. In this paper, we name the restart technique based on
Eqs. (3.1) and (3.6) as a Look-Back-type restart.

Based on the Look-Back-type restart, we can efficiently achieve the implicit resid-
ual polynomial reconstruction without explicit computations for the polynomials such

as Q
(ℓ)

M(ℓ)(λ) and R
(ℓ)

M(ℓ)(λ).

3.3. Implementation details. For any µ(ℓ) ∈ C the Look-Back-type restart
does not satisfy the monotonic decrease of the residual 2-norm ∥r(ℓ)∥2 even if it is
applied to the GMRES(m) method. We now have the following proposition for the
monotonic decrease of the residual 2-norm of the Look-Back GMRES(m) method.

Proposition 3.1. The Look-Back GMRES(m) method satisfies the monotonic
decrease of the residual 2-norm:

∥r(ℓ+1)∥2 ≤ ∥r(ℓ+1)
0 ∥2 = ∥r(ℓ) −Ay(ℓ+1)∥2 ≤ ∥r(ℓ)∥2, ℓ = 1, 2, . . . ,(3.7)
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Algorithm 2 A restarted Krylov subspace method with a Look-Back-type restart

1: Choose the parameter d ≥ 2 and the initial guess x
(1)
0

2: For ℓ = 1, 2, . . . , until convergence Do:
3: Set the restart frequency m(ℓ) and the KS(ℓ) method
4: Solve (approximately) Ax = b by m(ℓ) iterations of the KS(ℓ) method with the

initial guess x
(ℓ)
0 , and get the approximate solution x(ℓ)

5: Compute the vector y(ℓ+1) as follows:
If ℓ = 1 then y(ℓ+1) = 0
If ℓ ≥ 2 then
If (ℓ = d = 2) or (d : even, ℓ ≤ d

2 ) or (d : odd, ℓ ≤ d−1
2 ) then

∆x(ℓ) := x(ℓ) − x
(1)
0

Else

∆x(ℓ) :=

{
x(ℓ) − x(ℓd) (d : even)

x(ℓ) − x
(ℓd)
0 (d : odd)

, ℓd :=

{
ℓ− d

2 (d : even)
ℓ− d−1

2 (d : odd)
End If
y(ℓ+1) = µ(ℓ)∆x(ℓ), µ(ℓ) = argminµ∈C ∥r(ℓ) − µA∆x(ℓ)∥2

End If
6: Update the initial guess x

(ℓ+1)
0 := x(ℓ) + y(ℓ+1)

7: End For

as well as the GMRES(m) method if and only if µ(ℓ) is set by

|µ(ℓ) − µ
(ℓ)
min| ≤ |µ(ℓ)

min|, µ
(ℓ)
min = argmin

µ∈C
∥r(ℓ) − µA∆x(ℓ)∥2, ℓ = 1, 2, . . . .

Proof. The first inequality of (3.7) is satisfied for any µ(ℓ) because of the minimal
residual condition of the GMRES(m) method. Then we prove the necessary and
sufficient condition of the second inequality of (3.7).

Since the definition of y(ℓ+1) (3.6), the inequality ∥r(ℓ)−Ay(ℓ+1)∥2 ≤ ∥r(ℓ)∥2 can
be rewritten as ∥r(ℓ)∥2 − ∥r(ℓ) − µ(ℓ)A∆x(ℓ)∥2 ≥ 0, and this is equivalence to

µ(ℓ)(r(ℓ), A∆x(ℓ)) + µ(ℓ)(A∆x(ℓ), r(ℓ))− µ(ℓ)µ(ℓ)(A∆x(ℓ), A∆x(ℓ)) ≥ 0.

Then, using µ
(ℓ)
min = (A∆x(ℓ), r(ℓ))/(A∆x(ℓ), A∆x(ℓ)), we have

|µ(ℓ)
min| − |µ(ℓ) − µ

(ℓ)
min| ≥ 0.

Therefore Proposition 3.1 is proved.
The algorithm of the restarted Krylov subspace method with the Look-Back-type

restart is shown in Algorithm 2, where µ(ℓ) is set at µ(ℓ) = µ
(ℓ)
min. The incremental

operations per restart cycle and storage requirements for the Look-Back-type restart
compared with the traditional restart (2.9) are also shown in Table 3.1, where Mat-
Vec and AXPY denote the incremental number of matrix-vector multiplications and
additions of scaled vectors respectively, and Storage means main part of incremental
storage requirements.

We note that these incremental operations and storage requirements correspond to
our current implementation. One can decrease the incremental Mat-Vec of the Look-
Back-type restart; however, such implementation may increase the effect of round-off
error.
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Table 3.1: The incremental operations per restart cycle and storage requirements for
the Look-Back-type restart compared with the traditional restart (2.9).

Mat-Vec AXPY Inner-Product Storage
d:even d:odd

1 3 2 d
2n

d+1
2 n

The parameter d depends on the degree of the polynomial R
(ℓ)

M(ℓ)(λ). It is expected
that quite large parameter d leads to decrease the effect of the Look-Back-type restart,

because the degree of the corresponding polynomial R
(ℓ)

M(ℓ)(λ) is very small, and also
leads to increase the storage requirements; see Table 3.1. Thus the quite large d is
not recommended. In this paper, we set d = 3.

4. Comparison analysis based on the residual polynomials. Let the coef-
ficient matrix A be diagonalizable: A = XΛX−1, where Λ = diag{λ1, . . . , λn} is the
diagonal matrix of the eigenvalues of A, and r0 and rk be the initial residual and the
residual vector obtained by k iterations of the Krylov subspace method, respectively.
We also let Pk(λ) ∈ Pk be the residual polynomial of the Krylov subspace method,
i.e., rk = Pk(A)r0, Pk(0) = 1. Then we have

∥rk∥2 ≤ max
i=1,2,...,n

|Pk(λi)|∥X∥2∥X−1∥2∥r0∥2.

Thus, the convergence rate of the residual 2-norm depends strongly on the magnitude
of the residual polynomial corresponding to each eigenvalue λi, and it is expected that
Pm(λ) converge uniformly with respect to each eigenvalue λi for efficient convergence.

In the following this section, we apply the typical restarted Krylov subspace
methods and their Look-Back-type methods: the GMRES(m) method; the FOM(m)
method; the Look-Back GMRES(m) method; and the Look-Back FOM(m) method,
to the 50 dimensional symmetric positive definite linear system of the form:

Ax = b, A = diag{0.022, 0.042, . . . , 1.002}, b = [1, 1, . . . , 1]T.(4.1)

Then we analyze comparison between the magnitude of the residual polynomial |Pm×ℓ(λi)|
with respect to each eigenvalue of A and the convergence rate of each method. For
solving the model problem (4.1), we set m = 5 as the restart frequency, d = 3 as

the parameter for the Look-Back-type restart and x
(1)
0 = [0, 0, . . . , 0]T for the initial

guess.
The log-plot of |Pm×ℓ(λi)| for 10th, 20th, . . . , 50th restart cycle of each method

are shown in Fig. 4.1, and the residual 2-norm histories are also shown in Fig. 4.2.
We firstly consider the residual polynomials and the convergence rate of the

GMRES(m) method and the FOM(m) method. From the white square □ in Fig. 4.1,
we can observe that the residual polynomials PG

m×ℓ(λ), P
F
m×ℓ(λ) have at most 5 (mul-

tiple) roots even ℓ ≥ 2. Therefore |PG
m×ℓ(λi)|, |PF

m×ℓ(λi)| corresponding to few eigen-

values near the roots are quite small even at early iterations; however, |PG
m×ℓ(λi)|,

|PF
m×ℓ(λi)| corresponding to other eigenvalues show relatively large values even ℓ = 50.

As the results of this non-uniform convergence manner of the residual polynomials
PG
m×ℓ(λi), PF

m×ℓ(λi) with respect to each eigenvalue, the poor convergence of the
GMRES(m) method and the FOM(m) method are caused; see Fig. 4.2.



10 A. IMAKURA, T. SOGABE AND S.-L. ZHANG

-12

-10

-8

-6

-4

-2

 0

 0  0.2  0.4  0.6  0.8  1

lo
g 10

 | 
P

(λ)
 |

λ

GMRES(m)
Look-Back GMRES(m)

(a) (Look-Back) GMRES(m), ℓ = 10

-12

-10

-8

-6

-4

-2

 0

 0  0.2  0.4  0.6  0.8  1

lo
g 10

 | 
P

(λ)
 |

λ

FOM(m)
Look-Back FOM(m)

(b) (Look-Back) FOM(m), ℓ = 10

-12

-10

-8

-6

-4

-2

 0

 0  0.2  0.4  0.6  0.8  1

lo
g 10

 | 
P

(λ)
 |

λ

(c) (Look-Back) GMRES(m), ℓ = 20

-12

-10

-8

-6

-4

-2

 0

 0  0.2  0.4  0.6  0.8  1

lo
g 10

 | 
P

(λ)
 |

λ

(d) (Look-Back) FOM(m), ℓ = 20

-12

-10

-8

-6

-4

-2

 0

 0  0.2  0.4  0.6  0.8  1

lo
g 10

 | 
P

(λ)
 |

λ

(e) (Look-Back) GMRES(m), ℓ = 30

-12

-10

-8

-6

-4

-2

 0

 0  0.2  0.4  0.6  0.8  1

lo
g 10

 | 
P

(λ)
 |

λ

(f) (Look-Back) FOM(m), ℓ = 30

-12

-10

-8

-6

-4

-2

 0

 0  0.2  0.4  0.6  0.8  1

lo
g 10

 | 
P

(λ)
 |

λ

(g) (Look-Back) GMRES(m), ℓ = 40

-12

-10

-8

-6

-4

-2

 0

 0  0.2  0.4  0.6  0.8  1

lo
g 10

 | 
P

(λ)
 |

λ

(h) (Look-Back) FOM(m), ℓ = 40

-12

-10

-8

-6

-4

-2

 0

 0  0.2  0.4  0.6  0.8  1

lo
g 10

 | 
P

(λ)
 |

λ

(i) (Look-Back) GMRES(m), ℓ = 50

-12

-10

-8

-6

-4

-2

 0

 0  0.2  0.4  0.6  0.8  1

lo
g 10

 | 
P

(λ)
 |

λ

(j) (Look-Back) FOM(m), ℓ = 50

Fig. 4.1: The graphs of log10 |PG
m×ℓ(λi)|, log10 |PF

m×ℓ(λi)|, log10 |PLB−G
m×ℓ (λi)| and

log10 |PLB−F
m×ℓ (λi)| for the restart cycle ℓ = 10, 20, . . . , 50.
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Fig. 4.2: The relative residual 2-norm history of the GMRES(m) method, the
FOM(m) method, Look-Back GMRES(m) method and the Look-Back FOM(m)
method.

Next we consider the residual polynomials and the convergence rate of the Look-
Back GMRES(m) method and the Look-Back FOM(m) method. Unlike the non-
uniform convergence manner for the GMRES(m) method and the FOM(m) method,
the Look-Back-type restart reconstructs the residual polynomial such that |PLB−G

m×ℓ (λi)|
and |PLB−F

m×ℓ (λi)| show almost the uniform convergence manner in all eigenvalues; see
black square ■ in Fig. 4.1. As the results of the uniform convergence manner of
the residual polynomials, the Look-Back GMRES(m) method and the Look-Back
FOM(m) method have the better convergence for the model problem (4.1) than the
GMRES(m) method and the FOM(m) method shown in Fig. 4.2.

We note that we also have almost the same results for other symmetric positive
definite linear systems with the different eigenvalue distribution.

5. Numerical experiments and results. In this section, we test the perfor-
mance of the GMRES(m) method and the Look-Back GMRES(m) method with no
preconditioners in Section 5.1 and with the ILU(0) preconditioner [10] in Section 5.2
respectively. We also examine, in Section 5.3, the relationship between the symmetry
property of the coefficient matrix and the convergence rate of these methods.

All the numerical experiments were carried out in double precision arithmetic
on OS: CentOS 64bit, CPU: Intel Xeon X5550 2.67GHz (1 core), Memory: 48GB,
Compiler: GNU Fortran ver. 4.1.2, Compile option: -O3.

5.1. Numerical experiments I. In this section, we test the performance of the
GMRES(m) method and the Look-Back GMRES(m) method without precondition-
ers. The performance of these methods is evaluated by the test problems from The
University of Florida Sparse Matrix Collection [7].

The characteristics of the coefficient matrices of the test problems are shown in
Table 5.1. (R) or (C) denotes the matrix type: Real nonsymmetric or Complex non-
Hermitian respectively. n,Nnz and Ave.Nnz denote the number of dimension, the
number of nonzero elements and the average nonzero elements per row or column
respectively.

We set b = [1, 1, . . . , 1]T as the right-hand side, x
(1)
0 = [0, 0, . . . , 0]T for the initial

guess. We also set m = 30, 100 as the restart frequency, d = 3 as the parameter for
the Look-Back-type restart and stopping criterion was set as ∥rk∥2/∥b∥2 ≤ 10−10.
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Table 5.1: Characteristics of the coefficient matrices of the test problems for the
GMRES(m) method and the Look-Back GMRES(m) method.

(Type) Matrix name n Nnz Ave.Nnz Application area

(R) CAVITY10 2597 76367 29.41 Computational fluid dynamics
(R) CHIPCOOL0 20082 281150 14.00 Model reduction problem
(R) COUPLED 11341 98523 8.69 Circuit simulation
(R) EPB1 14734 95053 6.45 Thermal problem
(R) EX28 2603 77781 29.88 Computational fluid dynamics
(R) FLOWMETER5 9669 67391 6.97 Model reduction problem
(C) KIM1 38415 933195 24.29 2D/3D problem
(C) LIGHT IN TISSUE 29282 406084 13.87 Electromagnetics problem
(R) NS3DA 20414 1679599 82.28 Computational fluid dynamics
(R) RAEFSKY1 3242 294276 90.77 Computational fluid dynamics
(R) RAJAT03 7602 32653 4.30 Circuit simulation
(R) RDB5000 5000 29600 5.92 Computational fluid dynamics
(C) WAVEGUIDE3D 21036 303468 14.43 Electromagnetics problem
(R) XENON1 48600 1181120 24.30 Materials problem
(R) XENON2 157464 3866688 24.56 Materials problem
(C) YOUNG1C 841 4089 4.86 Acoustics problem

Numerical results. The numerical results are presented in Tables 5.2–5.3. In
these tables, a † denotes that the methods did not converge within 100000 iterations.
We also present in Fig. 5.1 the relative residual 2-norm histories of both methods with
m = 30 for KIM1, LIGHT IN TISSUE, NS3DA, RAJAT03, RDB5000 and XENON2.
We analyze the results in terms of three aspects: convergence rate; computation time
per restart cycle (m iterations); and total computation time.

We firstly consider the convergence rate of both methods. In terms of the num-
ber of iterations (Iter), the Look-Back GMRES(m) method shows almost the same
or lower Iter than the GMRES(m) method in most cases. Especially, for CAVITY10
(m = 30), CHIPCOOL0 (m = 30, 100), COUPLED(m = 30), EX28 (m = 30, 100),
FLOWMETER5 (m = 30, 100) and RAJAT03 (m = 30), the GMRES(m) method did
not converge within 100000 iterations; on the other hand, the Look-Back GMRES(m)
method converged to the solution satisfying the required accuracy ∥rk∥2/∥b∥2 ≤
10−10; see TRR of Tables 5.2–5.3. We can see from these results that the Look-
Back-type restart has high potential to improve significantly the convergence rate of
the GMRES(m) method. We can also see from the comparison between the numer-
ical results for m = 30, 100 that the smaller restart frequency m leads to the larger
improvements in terms of Iter.

We can also see from Fig. 5.1 that the Look-Back GMRES(m) method shows the
monotonic decrease in the residual 2-norm as well as the GMRES(m) method. This
means that Proposition 3.1 is experimentally supported by these results. For KIM1,
NS3DA and RDB5000, both methods show the same level of convergence throughout
the whole iteration; see Fig. 5.1 (a), (c), (e). On the other hand, the Look-Back-type
restart well played for LIGHT IN TISSUE, RAJAT03 and XENON2, and then the
Look-Back GMRES(m) method shows a very well convergence property compared
with the GMRES(m) method throughout the whole iteration; see Fig. 5.1 (b), (d),
(f).

Next, we consider the computation time per restart cycle (m iterations); see
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Table 5.2: Convergence results (Iter : number of iterations, tTotal : total computation
time, tRestart : computation time per restart cycle, TRR : explicitly computed relative
residual 2-norm) of the GMRES(m) method and the Look-Back GMRES(m) method
for m = 30.

Matrix Method Iter Time[sec.] TRR
ttotal trestart

CAVITY10 GMRES(m) † † 7.79× 10−3 -9.37
LB-GMRES(m) 27961 7.40× 100 7.94× 10−3 -10.00

CHIPCOOL0 GMRES(m) † † 5.00× 10−2 -0.43
LB-GMRES(m) 34321 5.80× 101 5.05× 10−2 -10.00

COUPLED GMRES(m) † † 2.43× 10−2 -6.36
LB-GMRES(m) 78392 6.43× 101 2.46× 10−2 -10.00

EPB1 GMRES(m) 2826 2.53× 100 2.69× 10−2 -10.00
LB-GMRES(m) 1993 1.85× 100 2.81× 10−2 -10.00

EX28 GMRES(m) † † 7.85× 10−3 -0.82
LB-GMRES(m) 25321 6.93× 100 8.23× 10−3 -10.01

FLOWMETER5 GMRES(m) † † 1.78× 10−2 -0.38
LB-GMRES(m) 78091 4.68× 101 1.80× 10−2 -10.00

KIM1 GMRES(m) 2820 2.79× 101 3.02× 10−1 -10.01
LB-GMRES(m) 3963 4.02× 101 3.06× 10−1 -10.01

LIGHT IN TISSUE GMRES(m) 2964 1.80× 101 1.82× 10−1 -10.00
LB-GMRES(m) 938 5.81× 100 1.86× 10−1 -10.00

NS3DA GMRES(m) 2330 1.49× 101 1.92× 10−1 -10.00
LB-GMRES(m) 2317 1.51× 101 1.96× 10−1 -10.00

RAEFSKY1 GMRES(m) 5036 3.18× 100 1.89× 10−2 -10.00
LB-GMRES(m) 2551 1.62× 100 1.90× 10−2 -10.04

RAJAT03 GMRES(m) † † 1.30× 10−2 -0.55
LB-GMRES(m) 16621 7.41× 100 1.32× 10−2 -10.02

RDB5000 GMRES(m) 962 2.98× 10−1 9.27× 10−3 -10.00
LB-GMRES(m) 1021 3.08× 10−1 9.05× 10−3 -10.02

WAVEGUIDE3D GMRES(m) 34991 1.85× 102 1.58× 10−1 -10.00
LB-GMRES(m) 29685 1.57× 102 1.59× 10−1 -10.00

XENON1 GMRES(m) 11521 6.20× 101 1.61× 10−1 -10.00
LB-GMRES(m) 1879 1.06× 101 1.70× 10−1 -10.00

XENON2 GMRES(m) 15691 2.81× 102 5.37× 10−1 -10.00
LB-GMRES(m) 2372 4.26× 101 5.41× 10−1 -10.00

YOUNG1C GMRES(m) 6026 7.16× 101 4.67× 10−3 -10.00
LB-GMRES(m) 5564 6.66× 101 4.33× 10−3 -10.00

tRestart of Tables 5.2–5.3. In terms of computation time per restart cycle, the Look-
Back GMRES(m) method requires at most 10% more time than the GMRES(m)
method for both restart frequency m, and the difference becomes smaller with in-
creasing the restart frequency m. This depends on the fact that, in our implementa-
tion, the required additional operations for the Look-Back-type restart are just one
matrix-vector multiplication and few AXPY and inner-products per restart cycle; see
Table 3.1.
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Table 5.3: Convergence results (Iter : number of iterations, tTotal : total computation
time, tRestart : computation time per restart cycle, TRR : explicitly computed relative
residual 2-norm) of the GMRES(m) method and the Look-Back GMRES(m) method
for m = 100.

Matrix Method Iter Time[sec.] TRR
ttotal trestart

CAVITY10 GMRES(m) 56098 2.56× 101 4.55× 10−2 -10.00
LB-GMRES(m) 5001 2.26× 100 4.52× 10−2 -10.01

CHIPCOOL0 GMRES(m) † † 3.56× 10−1 -1.62
LB-GMRES(m) 25301 9.10× 101 3.58× 10−1 -10.00

COUPLED GMRES(m) 13333 2.36× 101 1.77× 10−1 -10.00
LB-GMRES(m) 6115 1.09× 101 1.78× 10−1 -10.00

EPB1 GMRES(m) 1781 3.91× 100 2.21× 10−1 -10.00
LB-GMRES(m) 1479 3.24× 100 2.21× 10−1 -10.01

EX28 GMRES(m) † † 4.63× 10−2 -2.19
LB-GMRES(m) 19601 8.96× 100 4.57× 10−2 -10.02

FLOWMETER5 GMRES(m) † † 1.42× 10−1 -6.08
LB-GMRES(m) 62901 8.67× 101 1.38× 10−1 -10.00

KIM1 GMRES(m) 519 9.38× 100 1.85× 100 -10.03
LB-GMRES(m) 514 9.29× 100 1.83× 100 -10.00

LIGHT IN TISSUE GMRES(m) 888 1.10× 101 1.24× 100 -10.02
LB-GMRES(m) 828 1.02× 101 1.25× 100 -10.00

NS3DA GMRES(m) 1983 1.64× 101 8.26× 10−1 -10.01
LB-GMRES(m) 1959 1.58× 101 8.08× 10−1 -10.00

RAEFSKY1 GMRES(m) 2775 2.41× 100 8.72× 10−2 -10.01
LB-GMRES(m) 1703 1.49× 100 8.71× 10−2 -10.01

RAJAT03 GMRES(m) 93476 9.56× 101 1.02× 10−1 -10.00
LB-GMRES(m) 5304 5.43× 100 1.03× 10−1 -10.00

RDB5000 GMRES(m) 387 2.53× 10−1 6.55× 10−2 -10.00
LB-GMRES(m) 380 2.48× 10−1 6.54× 10−2 -10.03

WAVEGUIDE3D GMRES(m) 25845 2.58× 102 9.99× 10−1 -10.00
LB-GMRES(m) 23826 2.39× 102 1.00× 100 -10.00

XENON1 GMRES(m) 3888 3.84× 101 9.91× 10−1 -10.00
LB-GMRES(m) 1912 1.90× 101 1.00× 100 -10.00

XENON2 GMRES(m) 4933 1.58× 102 3.20× 100 -10.00
LB-GMRES(m) 2273 7.28× 101 3.24× 100 -10.00

YOUNG1C GMRES(m) 1636 4.59× 101 2.80× 10−2 -10.00
LB-GMRES(m) 1493 4.20× 101 2.80× 10−2 -10.00

In terms of the total computation time (tTotal), from the results of the smaller
Iter and almost the same tRestart, we can see that the Look-Back GMRES(m) method
can obtain the solution within much smaller computation time than the GMRES(m)
method except the case for KIM1 (m = 30), NS3DA (m = 30) and RDB5000 (m =
30).

5.2. Numerical experiments II. In this section, we test the performance of
the GMRES(m) method and the Look-Back GMRES(m) method with the ILU(0)
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(b) LIGHT IN TISSUE
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(c) NS3DA
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(d) RAJAT03
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(e) RDB5000
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Fig. 5.1: The relative residual 2-norm history of GMRES(m) and Look-Back
GMRES(m) of m = 30 without preconditioners for KIM1, LIGHT IN TISSUE,
NS3DA, RAJAT03, RDB5000 and XENON2.

preconditioner, where the right preconditioning was used. The performance of these
methods is evaluated by the test problems from the discretization of two types of
Partial Differential Equations (PDEs).

For the first example, the test problems are obtained from the discretization of
the following PDE:

−(Aux)x − (Auy)y + α exp(2(x2 + y2))ux = F (x, y),

with α = 0.0, 0.5, 1.0, 2.0, over the unit square (x, y) ∈ [0, 1]× [0, 1] with the Dirichlet
boundary condition. The boundary condition and functions A and F are shown in
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Fig. 5.2: The boundary condition and the functions A and F of van der Vorst’s PDE
for numerical experiments II. (case 1)

Fig. 5.2. These problems were taken from van der Vorst’s paper [20], and some authors
have also used to test the performance of the Krylov subspace methods, e.g., [18]. We
discretized them by five point central differences over the square grid with size 1/201
in each directions, and the obtained linear systems have 2002 unknowns and 199598
nonzero elements.

For the second example, the test problems are obtained from the discretization
of the Helmholtz equation [5]

uxx + uyy + σ2u = 0

with σ = 0.69, 1.39, over the square region (x, y) ∈ [0, π] × [0, π]. The boundary
conditions are defined by

ux|x=0 = i
(
σ2 − 1

4

)1/2
cos y

2 , (Neumann condition)

ux − i
(
σ2 − 1

4

)1/2
u|x=π = 0, (Radiation condition)

uy|y=0 = 0, (Neumann condition)
u|y=π = 0, (Dirichlet condition)

where i denotes i2 = −1. Note that the exact solution is written by u(x, y) =
exp{i(σ2 − 1

4 )
1/2x} cos y

2 . We discretized them by five point central differences over
the square grid with size 1/201 in each directions, and the obtained linear systems
have (200× 201) unknowns and 200596 nonzero elements.

For first and second examples, we set x
(1)
0 = [0, 0, . . . , 0]T for the initial guess, m =

30 as the restart frequency, d = 3 as the parameter for the Look-Back GMRES(m)
method and stopping criterion was set as ∥rk∥2/∥b∥2 ≤ 10−12.

Numerical results. The relative residual 2-norm histories of the ILU(0) precon-
ditioned GMRES(m) method and the ILU(0) preconditioned Look-Back GMRES(m)
method for the first example are presented in Fig. 5.3 and for the second example are
shown in Fig. 5.4.

We can see from Fig. 5.3 for the van der Vorst’s PDE that the residual 2-norm
histories of the ILU(0) preconditioned GMRES(m) method stagnated at ∥rk∥2/∥b∥2 ≈
10−5; on the other hand, the ILU(0) preconditioned Look-Back GMRES(m) method
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(a) α = 0.0
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(b) α = 0.5
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(c) α = 1.0
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(d) α = 2.0

Fig. 5.3: The relative residual 2-norm history of the GMRES(m) method and the
Look-Back GMRES(m) method with the ILU(0) preconditioner for van der Vorst’s
PDE (case 1) with α = 0.0, 0.5, 1.0, 2.0.

converged smoothly for all parameters α. These results show that the Look-Back-
type restart has high potential to remedy the stagnation of the residual 2-norm of the
GMRES(m) method.

For the Helmholtz equations, the ILU(0) preconditioned Look-Back GMRES(m)
method also shows much higher convergence rate than the ILU(0) preconditioned
GMRES(m) method; see Fig. 5.4. Especially for the case of σ = 1.39, the convergence
rate of the ILU(0) preconditioned Look-Back GMRES(m) method is more than two
times faster as compared with the ILU(0) preconditioned GMRES(m) method.

5.3. Numerical experiments III. In this section, we examine the relationship
between the symmetry property of the coefficient matrix and the convergence rate of
the GMRES(m) method and the Look-Back GMRES(m) method without precondi-
tioner.

For the test problems, we recall van der Vorst’s PDE:

−(Aux)x − (Auy)y + α exp(2(x2 + y2))ux = F (x, y),

with α = 0.0, 0.1, 0.2, . . . , 10.0, over the unit square (x, y) ∈ [0, 1] × [0, 1], where we
consider two type of the boundary conditions and functions A and F shown in Fig. 5.5.
The test problems are obtained from five point central differences over the square grid
with size 1/51 in each directions, and obtained linear systems have 502 unknowns and
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(a) σ = 0.69
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(b) σ = 1.39

Fig. 5.4: The relative residual 2-norm history of the GMRES(m) method and the
Look-Back GMRES(m) method with the ILU(0) preconditioner for the Helmholtz
equation with σ = 0.69, 1.39.
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u = 1
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u = 1

u = 0
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F=1

A=1

F=5

A=0.2

Fig. 5.5: The boundary condition and the functions A and F of van der Vorst’s PDE
for the numerical experiments III (case 2 and case 3).

12398 nonzero elements. Notice that the obtained linear systems are real symmetric
for α = 0.0, and the larger α leads to the stronger non-symmetry for the obtained
linear systems.

For this experiment, we set x
(1)
0 = [0, 0, . . . , 0]T for the initial guess, m = 10, 30

as the restart frequency, d = 3 as the parameter for Look-Back GMRES(m) and
stopping criterion was set as ||rk||2/||b||2 ≤ 10−12.

Numerical results. We introduce the index θ(A) for the symmetry property of
the matrix A ∈ Rn×n defined by

θ(A) :=
||(A−AT)/2||2

||A||2
,

where 0 ≤ θ(A) ≤ 1, θ(A) ∈ R. We note that θ(A) = 0 for the symmetric matrices:
A = AT and θ(A) = 1 for the skew-symmetric matrices: A = −AT.

For the numerical results, the graphs of the comparison between the symmetry
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(a) case 1: full GMRES method
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(b) case 2: full GMRES method
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(c) case 1: GMRES(10) method
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(d) case 2: GMRES(10) method
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(e) case 1: GMRES(30) method
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(f) case 2: GMRES(30) method

Fig. 5.6: The graphs of the number of iterations versus the index θ(A) of the sym-
metry property for the full GMRES method , the GMRES(m) method and the
Look-Back GMRES(m) method for van der Vorst’s PDE (case 2 and case 3) with
α = 0, 0.1, 0.2, . . . , 10.0.

property θ(A) of the coefficient matrix and the number of iterations of both methods
are presented in Fig. 5.6 (c)–(f). The white square □ denotes the results of the
GMRES(m) method and the black square ■ denotes the results of the Look-Back
GMRES(m) method respectively. We also show the numerical results for the full
GMRES method (without restart) in Fig. 5.6 (a), (b), for comparison. The left
column of Fig. 5.6 shows the results for the case 2 of the van der Vorst’s PDE and
the right column shows for the case 3 respectively.

It is generally expected that the smaller θ(A) (near symmetric matrices) leads
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to the better convergence rate. This is experimentally supported by the numerical
results of the full GMRES method shown in Fig. 5.6 (a), (b). The number of iterations
of the full GMRES method increases almost monotonically with increasing θ(A).

However, the convergence rate of the GMRES(m) method becomes worse espe-
cially for the case of the smaller θ(A) which leaded to the better convergence for the
full GMRES method; see □ of Fig. 5.6 (c)–(f). This means that the restart slows the
convergence rate especially for near symmetric cases.

On the other hand, we can obtained the results that the Look-Back-type restart
remedies this difficulty. The number of iterations of the Look-Back GMRES(m)
method decreases in many cases especially for the smaller θ(A) as compared with
the GMRES(m) method, then the Look-Back GMRES(m) method shows the better
convergence with decreasing θ(A) as well as the full GMRES method; see ■ of Fig. 5.6
(c)–(f).

6. Conclusion. In this paper, we investigated the restarted Krylov subspace
methods, as typified by the GMRES(m) method and the FOM(m) method, for solving
non-Hermitian linear systems. We proposed the Look-Back-type restart based on
the implicit residual polynomial reconstruction via the initial guess for the restarted
Krylov subspace method.

From our comparison analysis and numerical experiments, we leaned that the
Look-Back-type restart can reconstruct the residual polynomial uniformly and it mod-
ifies the convergence property of the restarted Krylov subspace methods in many
problems. Especially for the near symmetric cases, the Look-Back-type restart signif-
icantly improves the convergence rate of the restarted Krylov subspace methods.
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