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Abstract: We consider an eigensolver for computing eigenvalues in a
given domain and the corresponding eigenvectors of large-scale matrix
pencils. The Sakurai-Sugiura (SS) method is an eigensolver based on
complex moments given by contour integrals of matrix inverses with
several shift points. This method has good parallel scalability, and is
suitable for massively parallel computing environments. The SS method
has several parameters, and the choice of these parameters is crucial
for achieving high accuracy and good parallel performance. We discuss
some numerical properties of the method, and present efficient parameter
estimation techniques. We demonstrate the efficiency of our method with
numerical experiments.

1 INTRODUCTION

Large-scale eigenvalue problems arise in many scientific and engineering areas such as
nano simulation, vibration analysis, data analysis, etc. Massively parallel computers
are used to solve such large-scale problems, and they require efficient algorithms for
parallel computing.

In this paper, we consider the problem of finding several eigenvalues in a given
domain and their corresponding eigenvectors of the generalized eigenvalue problem

Ax = λBx,

where A,B ∈ Cn×n. In [14], an eigensolver for generalized eigenvalue problems us-
ing complex moments is proposed. This method is called the Sakurai-Sugiura (SS)
method. In the SS method, contour integrals with a source vector v are used to
generate a subspace spanned by a set of eigenvectors with respect to the eigenvalues
in a target domain. A large-scale eigenvalue problem is reduced to a small eigen-
value problem with Hankel matrices constructed from complex moments. In [16], an
interpretation for filtering of spectrum is used to discuss numerical properties of a
contour integral approximated by numerical quadrature. An influence of approxima-
tion by numerical quadrature is considered as a contamination of eigencomponents,
and the choice of an appropriate subspace size provides accurate eigenpairs in a
target domain.
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A variant of the SS method that improves numerical accuracy by using the
Rayleigh-Ritz procedure is presented in [15]. Ikegami, et al. [6, 7] presented a block
version of the SS method that uses multiple source vectors instead of the single
source vector for the contour integrals. The block SS method improves numerical
stability when the target domain contains many eigenvalues. Moreover, this method
can treat multiple eigenvalues. In [1, 2], the SS method is extended to nonlinear
eigenvalue problems. As related works of eigensolvers using contour integrals, Polizzi
[13] proposed an iterative refinement of a contour integral method for symmetric or
Hermitian positive definite eigenvalue problems. Beyn [3] proposed a method for
nonlinear eigenvalue problems using contour integrals with a singular value decom-
position of a matrix with a Hankel type structure. Yokota, et al. [21] proposed a
Rayleigh-Ritz type method using contour integrals for nonlinear eigenvalue prob-
lems. In this method, a subspace that includes target eigenvectors are generated by
contour integrals, and a large-scale nonlinear eigenvalue problem is projected to a
small nonlinear eigenvalue problem, and the projected problem is solved by Hankel
type nonlinear eigensolver using contour integrals.

The SS method computes a set of eigenvalues by computing the solutions to
systems of linear equations

(zjB − A)Yj = BV, j = 1, . . . , N, (1)

where V is a matrix with L column vectors and zj is a shift point on the complex
plane. The method computes the desired eigenvalues inside of a border defined
by the set of shifts {zj}. The first step of the SS method is the construction of
a subspace that includes the eigenvectors corresponding to the eigenvalues located
inside the given domain. In this step, solutions of linear systems at several shift
points are used. The second step is to solve the projected problem in the subspace
and to extract the approximate eigenvalues and the corresponding eigenvectors for
the original problem. Since the size of the projected subspace is assumed to be small
compared with the original matrix size, the computational costs of the first step is
dominant.

Krylov subspace methods for multiple right-hand sides are efficient for solving
the linear systems (1). In [11, 18], methods to improve numerical stability and con-
vergence for block Krylov subspace methods are presented. In the case of standard
eigenvalue problems, the linear systems (1) are shifted linear systems, and a shift
invariance of the Krylov subspace reduces computational costs to obtain solutions
of linear systems at several shift points [12]. The application of the SS method with
the shifted CG method for shell model calculations is reported in [10]. Futamura,
et al. [5] presented an efficient implementation techniques for solving such shifted
linear systems in parallel computing, and a report of application for band structure
calculations with the real space density functional theory on the K computer is pre-
sented. Yamazaki, et al. [20] implemented a nonlinear version of the SS method,
and evaluated parallel performances of the method.

Each of the linear systems is independent with respect to the other shifts, so each
can be solved without any consideration of the nodes assigned to different shifts in
distributed computing. Therefore, the method provides coarse-grained parallelism
of computation. By employing a parallel linear solver for each shift point, the total
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number of nodes is the product of the number of nodes assigned for each linear
system and the number of shift points.

The SS method has several parameters, and the choice of these parameters is
crucial for achieving high accuracy and good parallel performance. In this paper, we
show some numerical properties of the method. The contour integral for a matrix
inverse is regarded as a filter for an eigensubspace. When the contour integral is
approximated by numerical quadrature, the quadrature error causes contamination
of the eigencomponents corresponding to the eigenvalues located outside of the con-
tour path. Based on these properties, we propose efficient parameter estimation
techniques for the SS method.

In [4], a method for stochastic estimation of number of eigenvalues in a given
domain is proposed. This estimation can be used for predicting appropriate pa-
rameters. Maeda, et al. [9] extended this eigenvalue count method to nonlinear
eigenvalue problems.

The rest of this paper is organized as follows. In Section 2, we briefly introduce
the SS method. In Section 3, the properties of numerical quadrature applied for a
matrix inverse are discussed. In Section 4, efficient parameter estimation methods
are presented. Some numerical experiments are shown in Section 5. The last section
concludes the paper.

2 A CONTOUR INTEGRAL-BASED EIGENSOLVER

In this section, we briefly introduce the SS method. For matrices A,B ∈ Cn×n,
let λ1, . . . , λn be eigenvalues of the matrix pencil A − λB, and let x1, . . . ,xn be
corresponding eigenvectors. Let Γ be a positively oriented closed Jordan curve in
the complex plane, and let G be a domain for which the border is given by Γ. We will
find the eigenvalues inside Γ and the corresponding eigenvectors by using contour
integrals.

2.1 Eigensubspace obtained by contour integrals

Suppose that m eigenvalues λ1, . . . , λm are located inside Γ, and other eigenvalues
are located outside Γ. Define a sequence of matrices F0, F1, . . . as

Fk =
1

2πi

∫
Γ

zk(zB − A)−1B dz, k = 0, 1, . . . . (2)

For a matrix V ∈ Rn×L with a positive integer L, let

Sk = FkV =
1

2πi

∫
Γ

zk(zB − A)−1B dz V, k = 0, . . . , M − 1, (3)

where M is chosen such that LM ≥ m, and set

F = [F0, F1, . . . , FM−1]

and
S = [S0, S1, . . . , SM−1].
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According to [14], the column vectors of S are given by linear combinations of
the eigenvectors with respect to the eigenvalues located inside Γ, and thus

span(S) = span(x1, . . . ,xm),

if the column space of V includes x1, . . . ,xm. V is called a source matrix for the con-
tour integral. In practice, the elements of V are set by a random number generator.
The eigenvectors x1, . . . ,xm are obtained from S when the maximum multiplicity
of the eigenvalues in Γ is less than or equal to L.

Using the Rayleigh-Ritz procedure with S, we can extract the eigenpairs. Let
the singular value decomposition of S be

S = UΣWH,

where Σ = diag(σ1, . . . , σLM ), U ∈ Cn×LM and W ∈ CLM×LM . Since the rank of S
is m, σm 6= 0 and σm+1 = · · · = σLM = 0. Setting Um = U(:, 1 : m), we calculate
the projected matrices as

Am = UH
mAUm, Bm = UH

mBUm. (4)

Let ω1, . . . , ωm be the eigenvalues of the matrix pencil Am−λBm, and let r1, . . . , rm

be the corresponding eigenvectors. Then the eigenvalues inside Γ of the matrix pencil
A − λB are given by

λi = ωi, i = 1, . . . ,m,

and the corresponding eigenvectors are given by

xj = Umrj , j = 1, . . . ,m. (5)

When the matrices are large, storage of S and computation of the singular value
decomposition restrict the application size of the method. The use of Hankel ma-
trices reduces the memory requirement and computational costs. Let Mk ∈ CL×L

be
Mk =

1
2πi

∫
Γ

zkV T(zB − A)−1BV dz. (6)

Let the Hankel matrices HLM ,H<
LM ∈ CLM×LM be

HLM =


M0 M1 · · · MM−1

M1 M2 · · · MM
...

...
...

MM−1 MM · · · M2M−2


and

H<
LM =


M1 M2 · · · MM

M2 M3 · · · MM+1
...

...
...

MM MM+1 · · · M2M−1

 .
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Let the singular value decomposition of H̃m be

H̃m = Ũ Σ̃W̃H, (7)

where H̃m = HLM (1 : m, 1 : m) and H̃<
m = H<

LM (1 : m, 1 : m). Let ω̃1, . . . , ω̃m and
q̃1, . . . , q̃m be the eigenvalues and the corresponding eigenvectors such that

(Σ̃−1ŨHH̃<
mW̃ )q̃i = ω̃iq̃i, i = 1, . . . ,m.

Then the eigenvalues of the matrix pencil A − λB in Γ are given by

λi = ω̃i.

The eigenvectors are given by

xi = S(:, 1 : m)W̃qi, i = 1, . . . , m.

In this computation, the singular value decomposition of S does not required. A
disadvantage using the Hankel matrices with the moment matrices Mk is numerical
instability comparing with the Rayleigh-Ritz procedure in the case of numerical
computation with large m.

In the case of the nonlinear eigenvalue problem T (λ)x = 0 with a matrix valued
function T (λ), the integrand V T(zB − A)−1BV in (6) is replaced by V TT (z)−1V
[1, 2]. Note that the derived eigenvalue problem with Hankel matrices are linear even
if the original problem is nonlinear. In [3], the integrand in the contour integral (6)
is replaced by T (z)−1V instead of V TT (z)−1V .

2.2 Approximation by a numerical quadrature

The contour integral in (2) is approximated by an N -point numerical quadrature.
Suppose that a Jordan curve Γ is represented by scaling and shifting from a Jordan
curve Γ0 with a scaling factor ρ and sa hift γ. Without any loss of generality, we
assume that Γ0 encloses the origin. Let ζ(θ) be a point on Γ0 with a parameter θ,
0 ≤ θ ≤ 2π, and let z on Γ be given by

z(θ) = γ + ρζ(θ).

Then the contour integral of a function f(z) is given by

1
2πi

∫
Γ

f(z)dz =
1
2π

∫ 2π

0
f(z)(−iρζ ′(θ))dθ =

1
2π

∫ 2π

0
ρf(z)w(θ)dθ, (8)

where w(θ) = −iζ ′(θ). The integral (8) is approximated by the N -point quadrature
rule

1
2πi

∫
Γ

f(z)dz ≈
N∑

j=1

ρwjf(zj), (9)

where wj = w(θj)∆j/(2π), ζj = ζ(θj) and zj = γ + ρζj with appropriate θj and ∆j ,
j = 1, . . . , N .
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Since
1

2πi

∫
Γ0

ζkdζ =
{

1, k = −1
0, otherwise

for integer k, the quadrature points ζ1, . . . , ζN on Γ0 and the corresponding weights
w1, . . . , wN are set to satisfy

N∑
j=1

wjζ
k
j =

{
ν 6= 0, k = −1
0, k = 0, . . . , N − 2

, (10)

where ν is a nonzero constant.
In particular, when Γ is a circle with center γ and radius ρ, and the quadrature

points are set as

zj = γ + ρ(cos θj + i sin θj), j = 1, . . . , N,

where θj = (2π/N) × (j − 1/2), j = 1, . . . , N , then Γ0 is the unit circle and the
quadrature weights are given by

wj = cos θj + i sin θj , j = 1, . . . , N.

In the case that all the eigenvalues are located on the real axis, it might be better
to put the quadrature points closer to the real axis as follows:

zj = γ + ρ(cos θj + iα sin θj), j = 1, . . . , N (11)

with a vertical scaling factor 0 < α < 1. The corresponding quadrature weights are
given by

wj = α cos θj + i sin θj , j = 1, . . . , N. (12)

In [12], quadrature points are set on straight lines to reuse solutions of linear systems.
The Gauss-Legendre quadrature rule on a circle is used for the numerical quadrature
in [13].

Using the quadrature rule (9), Fk and Sk are approximated by

Fk ≈ F̂k =
N∑

j=1

ρwjζ
k
j (zjB − A)−1B (13)

and

Ŝk = F̂kV =
N∑

j=1

ρwjζ
k
j (zjB − A)−1BV. (14)

Matrices F and S are approximated by F̂ = [F̂0, . . . , F̂M−1] and Ŝ = [Ŝ0, . . . , ŜM−1].
The Rayleigh-Ritz procedure for Ŝ gives the approximate eigenvalues λ̂i and the

eigenvectors x̂i. Let the singular value decomposition of Ŝ be

Ŝ = Û Σ̂ŴH,
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where Σ̂ = diag(σ̂1, . . . , σ̂LM ). Let K be the number of singular values of Ŝ that
satisfy σ̂i ≥ δ, 1 ≤ i ≤ K with small δ > 0. We calculate the projected matrices as

Â = Û(:, 1 : K)H(A − γB)Û(:, 1 : K), B̂ = Û(:, 1 : K)HBÛ(:, 1 : K). (15)

Let ω̂1, . . . , ω̂K be the eigenvalues of the matrix pencil Â − λB̂, and let r̂1, . . . , r̂K

be the corresponding eigenvectors. Then the approximate eigenvalues inside Γ are
given by

λ̂i = γ + ω̂i, i = 1, . . . , K,

and the corresponding eigenvectors are given by

x̂j = Û(:, 1 : K)r̂j , j = 1, . . . , K. (16)

3 FILTERING FOR A SUBSPACE

In this section, we discuss the properties of the subspace obtained by the numerical
quadrature (14) from the view-point of a filter for a subspace.

Here, for simplicity, we consider the case that all the eigenvalues inside Γ are
simple, and the inverse of the matrix zB − A is expanded as

(zB − A)−1 =
n∑

i=1

xiy
H
i

z − λi
, (17)

where xi and yi are the right and left eigenvectors corresponding to the eigenvalue λi.
This expansion can be generalized to non-Hermitian and nonlinear cases ([2, 3, 14]).

Let Pi = xiy
H
i B, 1 ≤ i ≤ n. With the expansion (17), from the residue theorem,

we have

Fk =
1

2πi

∫
Γ

zk(zB − A)−1Bdz

=
n∑

i=1

(
1

2πi

∫
Γ

zkPi

z − λi
dz

)

=
m∑

i=1

λk
i Pi,

and

Sk = FkV =
m∑

i=1

λk
i PiV.

Define a function Fk(λ) as

Fk(λ) =
1

2πi

∫
Γ

zk

z − λ
dz.

Then

Fk(λi) =
{

λk
i λi ∈ G

0, otherwise
,
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and Sk is represented as

Sk =
n∑

i=1

Fk(λi)PiV.

This equation shows that a projected component associated with Pi in V is filtered
with the factor Fk(λi). Therefore the function Fk(λ) is regarded to give the factor
of filtering with respect to λ.

For the case that the contour integral is approximated by the numerical quadra-
ture, we define the corresponding filter function by

F̂k(λ) =
N∑

j=1

ρwjζ
k
j

zj − λ
.

The following result is obtained.

Theorem 1 Let λ be a complex number that is located outside Γ. Then the following
holds:

F̂k(λ) = −νN−1η
−N+k

1 + η−1
∞∑

p=0

νN+p

νN−1
η−p

 , (18)

where η = (λ − γ)/ρ and νp =
∑N

j=1 wjζ
p
j .

Proof. Since |η| = |(λ − γ)/ρ| > |ζj | for 1 ≤ j ≤ N , we have

N∑
j=1

ρwjζ
k
j

zj − λ
=

N∑
j=1

wjζ
k
j

(zj − γ)/ρ − (λ − γ)/ρ
=

N∑
j=1

wjζ
k
j

ζj − η

=
N∑

j=1

(
−1
η

)
wjζ

k
j

1 − ζj/η

= −
∞∑

p=0

η−p−1
N∑

j=1

wjζ
p+k
j

 .

Since the quadrature weights w1, . . . wN satisfy

N∑
j=1

wjζ
k
j = 0, 1, k = 0, . . . , N − 2,

we have

F̂k(λ) =
N∑

j=1

ρwjζ
k
j

zj − λ
= −

∞∑
p=N−1−k

η−p−1
N∑

j=1

wjζ
p+k
j


= −

νN−1η
−N+k +

∞∑
p=0

νN+pη
−N+k−1−p

 .
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Thus we have eqn (18). �

If |(λ − γ)/ρ| is sufficiently large then the filter F̂k(λ) is approximated by

F̂k(λ) =
N∑

j=1

ρwjζ
k
j

zj − λ
≈ −νN−1

(
λ − γ

ρ

)−N+k

. (19)

This implies that the eigencomponents corresponding to the eigenvalues located
outside Γ in each column vector of Ŝk = F̂kV are reduced in proportion to the
(−N + k)-th power of magnitude of the scaled distance |(λ − γ)/ρ|.

Suppose that the integer m′ is taken as∣∣∣∣∣νN−1

(
λi − γ

ρ

)−N+M−1
∣∣∣∣∣ ≤ δ, m′ < i ≤ n (20)

with small δ > 0. Then, from eqn (18), we have

Ŝk = F̂kV =
n∑

i=1

F̂k(λi)PiV =
m′∑
i=1

F̂k(λi)PiV + O(δ).

4 EFFICIENT PARAMETER ESTIMATION AND IM-
PLEMENTATION

4.1 Selection of subspace size

The SS method has some parameters, and the choice of these parameters affects
the accuracy and performance of the method. The number of quadrature points N
determines the number of systems of linear equations to solve, and consequently N
specifies the number of computing nodes to use in parallel computing. Therefore
we assume that N is fixed in advance. In practice, N is chosen as N = 16 or 32
depending on the number of computing nodes or memory requirements, and it is
not necessary to take a large N to reduce the quadrature error as was observed in
the previous section.

The parameter M specifies the upper bound of the degree of moments. Increasing
M gives a larger subspace size LM . However, the decay factor of the filter depends
on −N + k with 0 ≤ k ≤ M − 1, and a large M diminishes the performance of
the filter. Considering a performance of the filer and computational costs, we set
M = N/4.

The number of column vectors LM of Ŝ should be taken such that the minimum
singular value of Ŝ becomes sufficiently small. Since M depends on N , we shall
extend the number of column vectors of Ŝ by increasing the number of source vectors
L. Since m′ is larger than or equal to m, an approximation for m can be used as a
lower bound of m′. To predict m, we use the stochastic estimation method proposed
in [4, 9]. The number of eigenvalues inside Γ is given by

m =
1

2πi

∫
Γ

trace((zB − A)−1B)dz.
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However, the cost of computing the trace of the matrix inverse is large if the matrices
are large. The trace of (zB − A)−1B is approximated by

trace((zB − A)−1B) ≈
(

1
L0

) L0∑
i=1

vT
i (zB − A)−1Bvi,

with some integer L0, where the elements of the sample vectors vi ∈ Rn are taken as
−1 or 1 with equal probability. The contour integral is approximated by the N -point
numerical quadrature. Thus, the estimated number of eigenvalues m̃ is given by

m ≈
N∑

j=1

ρwj

(
trace((zjB − A)−1B)

)
≈

N∑
j=1

ρwj

((
1
L0

) L0∑
i=1

vT
i (zjB − A)−1Bvi

)
= m̃.

Note that

m̃ =
N∑

j=1

ρwj

((
1
L0

) L0∑
i=1

vT
i (zjB − A)−1Bvi

)
= trace(V TŜ0)/L0,

and Ŝ0 can be used for the stochastic estimation of the number of eigenvalues by
setting V = [v1, . . . ,vL0 ] in the SS method.

Using m̃, we set the approximation of m′ as κm̃ with a parameter κ ≥ 1, and
consequently we set L = dm′/Me ≈ dκm̃/Me, where dxe returns the smallest integer
not less than x. When the subspace size LM is not sufficiently large, the minimum
singular value σmin of Ŝ is not small. In this case, we increment L until σmin satisfies
the condition σmin ≤ δ×σ1 with small δ > 0. The computation of the singular values
of Ŝ is rather expensive, so we may use the Hankel matrix Ĥ instead of Ŝ.

4.2 Iterative refinement of a subspace

After setting appropriate L, we apply the Rayleigh-Ritz procedure with Ŝ. The
increase of L causes an increase in the size of the projected subspace. It causes
an increase in the cost for computing the singular value decomposition of Ŝ and
the solution of the projected eigenvalue problem with matrices Â and B̂. To avoid
increasing the size of the projected space, we restrict the size of L, and apply the
recurrence refinement described below.

Setting Ŝ
(0)
0 = Ŝ0, and recurrently applying F̂0, we have

Ŝ
(r−1)
0 = F̂0Ŝ

(r−2)
0 = · · · = (F̂0)r−1Ŝ

(0)
0 . (21)

Using Ŝ
(r−1)
0 , the output matrix with r refinements is given by

Ŝ
(r)
k = F̂kŜ

(r−1)
0 , k = 0, . . . ,M − 1, (22)
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and Ŝ(r) = [Ŝ(r)
0 , . . . , Ŝ

(r)
M−1]. The corresponding filter is given by (Fk(λ))r and is

approximated by

(F̂k(λ))r ≈ (−νN−1)r

(
λ − γ

ρ

)−r(N−k)

.

Therefore the recurrence application of the filter process makes the decay factor of
the filter smaller. The refinement is terminated if the smallest singular value of Ŝ(r)

becomes sufficiently small with a threshold δ > 0.
In the case that some residuals of the obtained approximate eigenpairs are not

small enough for a given tolerance, we can brush up the resulting approximate
eigenpairs by setting the source matrix of the SS method as

V = [x̂1, . . . , x̂m̂]C,

where C ∈ Rm̂×L for which the elements are given by random numbers, and x̂1, . . . , x̂m̂

are the selected eigenvectors that are regarded as the approximate eigenvectors with
respect to the eigenvalues inside Γ. This refinement technique using approximate
eigenvectors for the source matrix V is used in [13].

4.3 Linear solvers for a complex shift

When A and B are real symmetric, the shifted matrix C = zB −A with a complex
shift z is complex symmetric. Therefore, a linear solver for complex symmetric
systems is used to solve the system

(zB − A)Y = BV.

For a direct solver, the modified Cholesky factorization saves computational costs
for factorization. For an iterative solver, Krylov subspace methods for complex
symmetric systems, such as the COCG method, can be used.

When Γ is symmetric with respect to the real axis, the quadrature points are set
as zN−j+1 = zj , j = 1, . . . , N/2. Then, for real matrices A and B, the solutions at
zN−j+1 are obtained by

YN−j+1 = (zN−j+1B − A)−1BV = Y j

without any computations on zN−j+1.
When A and B are Hermitian, we use the property

(zjB − A)H = zjB
H − AH = zjB − A.

If the LU factorization at zj is calculated as zjB − A = LU then we have

YN−j+1 = (zjB − A)−1V = (UHLH)−1V.

Therefore the LU factorization at zj can be used for the calculation at zN−j+1.
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5 NUMERICAL EXAMPLES

In this section we show some numerical examples. The computations are performed
in MATLAB 8.0.0. in double precision arithmetic. Random numbers are generated
by the function rand, and the projected small eigenvalue problems are solved by eig.
The systems of linear equations are solved by lu. The factorized matrices are held
during the computation, and only triangular solves are applied in the recurrence
refinements.

In the following examples, the quadrature points are set by eqn (11) and the
corresponding weights are set by eqn (12) with α = 0.1. The relative residual for
the eigenpair (λ̂i, x̂i) is calculated by

resi =
‖Ax̂i − λ̂Bx̂i‖2

‖Ax̂i‖2 + |λ̂i|‖Bx̂i‖2

.

We removed the eigenvalues with resi ≥ 10−2 inside Γ as spurious eigenvalues.

Example 1. The matrices A and B are taken from BCSSTK11 and BCSSTM11
of the BCS Structural Engineering Matrices in Matrix Market [8]. A and B are
real symmetric and B is positive definite. The matrix dimension is n = 1, 473 with
34, 241 nonzero entries. The parameters are set as N = 16 and L = 16. The domain
is set as γ = 103 and ρ = 5 × 102. In this example, L is fixed, and the iterative
refinement is not applied.

The results are shown in Table 1. The number of singular values that are greater
than δ = 10−12 is K = 18. Therefore 18 eigenvalues are obtained from the projected
problem, of which 7 eigenvalues are located inside Γ. The residuals of the eigenvalues
located inside Γ are small, however the residuals of the eigenvalues located outside
Γ are related to the scaled distance |ηi| = |(λi − γ)/ρ|.

Example 2. In this example, we apply the iterative refinement defined by (21)
and (22). The matrices A and B are same as Example 1. The parameters are set as
N = 16, L = 16, and the domain is set as γ = 2 × 105 and ρ = 2 × 104.

In Figure 1, The singular values of Ŝ(r) at r-th refinement are shown. We can
see that the ratio of the minimum singular value and the maximum singular value
increases by the iterative refinement. After two refinement, the minimum singular
value becomes small enough. Table 2 shows the residuals of the calculated eigenval-
ues located inside Γ. In the table, the notation mean(resi) is given by the geometric
mean of the residuals defined by

mean(resi) =

(
m̂∏

i=1

resi

)1/m̂

,

where m̂ is the number of calculated eigenvalues located inside Γ.

Example 3. In this example, we use the stochastic estimation of the number of
eigenvalues in Γ to set the initial L, and the iterative refinement of Ŝ is also used.
The matrices A and B are same as Example 1. The parameters are set as N = 16
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Table 1: Results of Example 1.

i λ̂i resi |ηi|
1 2345.08723030540 3.0 × 10−01 3.3
2 2398.81729572773 3.3 × 10−01 3.2
3 2628.94468521146 4.9 × 10−02 2.7
4 2723.54384863656 1.4 × 10−02 2.6
5 3383.97540832681 3.8 × 10−08 1.2
6 3501.25383608303 9.0 × 10−11 –
7 3561.62085364923 2.7 × 10−11 –
8 3629.33212408543 4.0 × 10−11 –
9 3796.50112783802 4.8 × 10−11 –
10 4022.39762561787 3.1 × 10−11 –
11 4100.71462746484 1.5 × 10−11 –
12 4175.86741050601 3.4 × 10−11 –
13 4770.43635520514 5.1 × 10−06 1.5
14 5071.04303115872 1.6 × 10−04 2.1
15 5185.64239506030 3.5 × 10−03 2.4
16 5325.06302301902 1.6 × 10−02 2.7
17 5608.24863853754 1.0 × 10−01 3.2
18 5874.78406307974 6.6 × 10−01 3.8

r = 0

r = 1

r = 2

lo
g
1
0
(σ

i
/σ

1
)

i

Figure 1: Singular values in r-th iterative refinement.
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Table 2: Results in Example 2.

]refinement min(resi) mean(resi) max(resi)
0 1.8 × 10−07 9.1 × 10−06 1.7 × 10−04

1 3.8 × 10−12 1.1 × 10−10 1.1 × 10−09

2 1.9 × 10−14 7.2 × 10−13 1.2 × 10−11

and δ = 10−12. The domain is set as γ = 2 × 105 and ρ = 2 × 104. The number
of sample vectors for the stochastic estimation of the number of eigenvalues in Γ is
set as L0 = 16. The initial guess of the number of column vectors of V is given by
L = d2m̃/Me, i.e. κ = 2.

In Table 3, we show the residuals of the eigenvalues located inside Γ. The number
of eigenvalues in Γ is m = 30 and the estimated number of eigenvalues is m̃ = 32.7.
The number of iterative refinement is 2.

Example 4. The matrices A and B are taken from BCSSTK13 and BCSSTM13.
A and B are real symmetric and B is positive semi-definite. The matrix dimension is
n = 2, 003 with 83, 883 nonzero entries. The parameters are the same as in Example
3. The domain is set as γ = 106 and ρ = 4 × 105.

In Table 4, we show the residuals of the eigenvalues located inside Γ. The number
of eigenvalues in Γ is m = 73 and the estimated number of eigenvalues is m̃ = 77.7.
The number of column vectors of V is L = 55 and the number of iterative refinement
is 2. The maximum, mean and minimum residuals are 2.1× 10−10, 8.6× 10−12 and
2.7×10−13, respectively. We can obtain the eigenpairs in the given domain with the
same initial parameters.

Example 5. The matrices A and B are derived from molecular orbital cal-
culations for a model DNA [19]. A and B are real symmetric and B is positive
definite. The matrix dimension is n = 1, 980 with 728, 080 nonzero entries. The
parameters are the same as in Example 3 and 4. The domains are given by the in-
tervals [−0.20,−0.15], [−0.25,−0.15], [−0.30,−0.15], [−0.35,−0.15], [−0.40,−0.15],
[−0.45,−0.15] and [−0.50,−0.15].

In Table 5, we show the number of eigenvalues in the given interval (]ev), the
estimated number of eigenvalues (Est. ]ev), the number of column vectors of V
(L), the number of iterative refinement (]refinement) and the maximum residuals of
eigenvalues in the interval (max(resi)). In the results, the maximum residuals are
sufficiently small by estimating appropriate L and the number of iterative refinement
for each domain.

6 CONCLUSIONS

In this paper, we considered an eigensolver for computing the eigenvalues in a
given domain and the corresponding eigenvectors of large-scale matrix pencils. The

14



Table 3: Results in Example 3.

i λ̂i resi i λ̂i resi

1 181301.355856 3.0 × 10−12 16 206423.180896 2.2 × 10−12

2 181353.297523 8.2 × 10−13 17 207887.176182 4.5 × 10−12

3 185810.063953 3.1 × 10−12 18 209720.799807 1.2 × 10−12

4 185856.309721 2.2 × 10−12 19 211359.608331 1.6 × 10−12

5 189076.069885 1.3 × 10−12 20 211525.005509 1.2 × 10−12

6 190580.274469 1.7 × 10−12 21 211778.728062 1.0 × 10−12

7 191916.768828 4.6 × 10−12 22 211798.736010 1.4 × 10−12

8 192249.997887 6.2 × 10−12 23 214623.208612 1.7 × 10−12

9 192450.352262 8.8 × 10−12 24 215071.649241 1.2 × 10−12

10 195110.875562 8.9 × 10−13 25 216638.323804 1.1 × 10−12

11 195362.147280 1.6 × 10−12 26 216782.856683 5.0 × 10−13

12 195522.864186 2.1 × 10−12 27 216875.914785 4.9 × 10−13

13 196453.465229 9.5 × 10−13 28 217120.082795 1.4 × 10−12

14 196779.318796 1.1 × 10−12 29 217475.120411 1.3 × 10−13

15 203358.448118 5.6 × 10−13 30 217803.381541 5.8 × 10−13

Table 4: Results in Example 4.

i λ̂i resi i λ̂i resi

1 602514.527692 1.2 × 10−12 38 964884.799128 2.7 × 10−11

2 605178.148251 2.1 × 10−11 39 971058.404128 3.0 × 10−11

3 616657.672408 5.2 × 10−12 40 973436.179279 9.5 × 10−12

4 623758.141144 2.2 × 10−11 41 981630.285398 3.0 × 10−11

5 641859.031825 1.3 × 10−12 42 985027.771304 6.4 × 10−11

...
...

...
...

...
...

33 924036.280859 7.0 × 10−11 70 1332026.80482 7.5 × 10−12

34 927854.750782 4.3 × 10−12 71 1348423.99041 4.7 × 10−13

35 941218.254886 9.8 × 10−12 72 1372139.51897 8.4 × 10−12

36 942132.221466 1.5 × 10−12 73 1379152.51378 1.1 × 10−12

37 960716.560772 1.0 × 10−11

Table 5: Results in Example 5.

Interval ]ev Est. ]ev L ]refinement max(resi)
[−0.20,−0.15] 22 23.9 16 1 2.8 × 10−13

[−0.25,−0.15] 78 80.0 40 2 2.1 × 10−12

[−0.35,−0.15] 198 196.3 99 2 8.5 × 10−12

[−0.40,−0.15] 262 270.1 136 2 1.7 × 10−12

[−0.45,−0.15] 333 327.9 164 2 9.0 × 10−12

[−0.50,−0.15] 406 410.5 206 2 9.4 × 10−12
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Sakurai-Sugiura (SS) method is an eigensolver based on complex moments given by
the contour integrals of the matrix inverses with several shift points.

Some numerical properties of the method were presented from the view-point of
a filter for a subspace. According to the results, efficient parameter estimation tech-
niques were shown. The contour integral for a matrix inverse is regarded as a filter
for an eigensubspace. When the contour integral is approximated by a numerical
quadrature, the quadrature error causes contamination of the eigencomponents cor-
responding to the eigenvalues located outside of the contour path. We demonstrated
the efficiency of our method with numerical experiments.

In the numerical experiments, we used a sparse direct solver. The use of iterative
linear solvers for multiple right-hand sides such as block Krylov subspace solvers are
useful because our eigensolver requires very small number of iterative refinement.
The combination of block iterative linear solvers and performance evaluation with
such solvers in practical problems remaining as future work. We are implementing a
software package of the SS method for large-scale parallel computing. Applications
of practical problems and performance evaluations of the presented method in a
massively parallel computing environment also remain as our future work.
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