T-SMC/21/4//40989D

Visualization of Structural Information: Automatic

Drawing of Compound Digraphs

Kozo Sugiyama
Kazuo Misue

Reprinted from
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS
Vol. 21, No. 4, July/August 1991

876 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 4 , JULY/AUGUST 199]

Visualization of Structural Information: Automatic
Drawing of Compound Digraphs

Kozo Sugiyama and Kazuo Misue

Abstract— An automatic method for drawing compound di-
graphs that contain both inclusion edges and adjacency edges
are presented. In the method vertices are drawn as rectangles
(areas for texts, images etc.), inclusion edges by the geometric
inclusion among the rectangles, and adjacency edges by arrows
connecting them. Readability elements such as drawing conven-
tions and rules are identified and a heuristic algorithm to generate
“readable” diagrams is developed. Several applications are shown
to demonstrate the effectiveness of the algorithm. The utilization
of curves is investigated to improve the quality of diagrams. A
possible set of command primitives for progressively organizing
structures within our graph formalism is also discussed. The
computational time for the applications shows that the algorithm
achieves satisfactory performance.

1. INTRODUCTION

HE EFFECTIVENESS of visualizing structural informa-

tion, in general, or drawing graphs, specifically, is widely
recognized and various diagrams are utilized in diverse fields
of research and development. Since numerous variations of
drawings are possible for a given structure, we need certain
criteria to evaluate the quality of drawings.

In considering the criteria, we should distinguish two cat-
egories of drawings: 1) emphasizing aspects of physical im-
plementation (e.g., resource economy, reliability) in realizing
physical layouts (e.g., LSI design), and 2) emphasizing aspects
of human visual cognition (e.g., readability, aesthetics) in
communicating conceptual notions (e.g., database schema).
Though there exist criteria common to both categories such
as line-crossings and global length of lines, it should be noted
that they have different meanings.

Many algorithms for automatically drawing graphs from
the cognitive viewpoint have already been proposed so far.
Extensive surveys have been conducted by Eades et al. [1],
Tamassia et al. [2], Sugiyama [3], [4] and Messinger 5]. These
algorithms can advance graphic facilities to enhance the human
thinking processes, since they may release us from nonintrinsic
operations in generating and editing diagrams, and cnable us
lo engage in thinking itself. However, the class of the graphs
treated in the algorithms have been rather restricted to ordinary
directed and undirected graphs in which only adjacency among

Manuscript received February 24, 1989; revised January 6, 1990 and
October 6, 1990. This paper was partially presented at the Third International
Conference on Human—Computer I[nteraction, held in Boston, MA, September
18-22, 1989.

‘The authors are with the International Institute for Advanced Study of Social
Information Science, Fujitsu Ltd., 140 Miyamoto, Numazu, Shizuoka 410-03,
Japan.

IEEE Log Number 9040989.

vertices is considered. The class of diagrams we utilize in
research and development activities and daily work is usually
much larger; ie., diagrams representing both Inclusive and
adjacent relations among vertices.

In this paper, from the cognitive viewpoint we consider an
automatic method for drawing a compound directed graph (or
compound digraph) with both inclusion edges and adjacency
edges [6]-[8]. In the method vertices are drawn as rectangles
(areas for representing texts, images, etc.), inclusion edges
are expressed by Inclusive relations among the rectangles,
and adjacency edges by arrows connecting the corresponding
pairs of vertices. The wholc algorithm consists of four steps:
hierarchization, normalization, vertex ordering and metrical
layout. We have already developed an algorithm for draw-
ing a directed graph [9], [10] based upon Warfield [11]
and some improvements of the algorithm have been carried
out by Messinger [5], Rowe et al. [12] and Gansner et
al. [13]. Though the algorithm for a compound digraph is
developed as an extension of the algorithm for a directed
graph, the former is much more complicated than the lat-
ter.

The drawings of graphs are called maps. Maps of compound
digraphs are widely used in diverse fields as “tools” for
enhancing human thinking; existential graph [14] in logics,
KJ method [15] in creativity engineering, associative networks
[16] and conceptual graph [17] in knowledge engineering and
so on. We call such methods diagrammatical thinking methods
[3]. Both the extension of formalism and the automatic draw-
ing capability presented in this paper will attain an effective
integration of human thinking and machine production of maps
in the development of novel computer-aided diagrammatical
thinking systems. They will also expand the use of visual
systems and/or interfaces for databases, knowledge bases,
expert systems, idea processors, design systems, decision
support systems and so on.

In Section I, our approach to the problem is described. The
four steps of the algorithm are presented in the succeeding four
sections. In Section VII, several applications are presented
and runtime performance of the algorithm is evaluated. The
utilization of curves is investigated to improve the readability
of maps and a possible set of primitives for progressively or-
ganizing structures within our graph formalism is also shown.
Finally, concluding remarks are made with suggestions for
future research, where the importance of investigations on
how to use the automatic drawing capabilities in dynamic
thinking processes under more general visual formalisms [18]
is emphasized.

0018-9472/21301.00 © 1991 IEEE

SUGIYAMA AND MISUE: VISUALIZATION OF STRUCTURAL INFORMATION

II. How T0 APPROAECH THE PROBLEM

In general, for designing algorithms to draw graphs, it is
necessary to clarify formalisms of drawn objects, analyze
elements affecting the quality of maps and specify features
of algorithms to be developed. In this section we describe
the class of graphs to be drawn, readability elements to be
attained and theoretical and heuristic aspects of algorithms to
be developed.

A. Class of Graphs

When two kinds of binary relations, inclusion and adjacency
relations, are defined on a finite set V of vertices, we can intro-
duce two specific directed graphs (or digraphs) corresponding
to the relations. An inclusion digraph is a pair D, = (V, E)
where E is a finite set of inclusion edges whose element
(u,v) € E means that u includes v. An adjacency digraph
is a pair D, = (V, F) where F is a finite set of adjacency
edges whose element (u,v) € F means that u is adjacent to
v. A compound digraph is defined as a triple D = (V, E, F)
obtained by compounding these two digraphs.

In this paper, we require two restrictions on a compound
digraph D.

Restriction 1: D, is a tree.

Consequently, D, is called an inclusion tree. In a tree,
parent, ancestors, children, and descendants of vertex v are
denoted by Pa(v), An(v), Ch(v) and De(v), respectively.
Both ancestors An(v) and descendants De(v) include vertex
v. The vertex without a parent is called root and a vertex
without children a leaf. There exists a unique semipath [19]
(or path without the property of direction) between any pair
of vertices in a tree. The depth of any vertex v is the number
of vertices on the semipath between v and root and is denoted
by dep(v); specifically, dep(root) = 1.

Restriction 2: In a compound digraph D = (V,E,F)
satisfying Restriction 1, the adjacency relation does not exist
between any pair of vertices among ancestors and descendants
in the inclusion tree, or

{(u,v) € F | v € An(u)"De(u)} = ¢. (1)

Compound digraphs with these restrictions appear in diverse
fields as stated in Section I. We can treat more general cases
by replacing rectangles intersecting each other with a proxy
rectangle and drawing adjacency edges violating Restriction 2
additively on a map of the restricted digraph.

In the succeeding part of this paper, a compound digraph
satisfying both restrictions is called a “compound digraph” for
simplicity if there is no ambiguity.

In Fig. 1, (a) shows an inclusion tree, (b) an adjacency
digraph, (c) a compound digraph obtained by compounding
(a) and (b), and (d) a map of the compound digraph drawn
automatically and its compound levels. In (d), the adjacency
edges drawn with solid lines have downward orientations and
the edges drawn with broken lines upward.

877

()

°3°82 %

(1) ——

* 1.1) =

?] Ly j

" n (1.1,2)]
E L12.1
L~
@ (1,1,2,2)

2 =

© i 2.1 7]
i ------- (122)

E a22.1 7]

b2z 7

1.23)

—

(d)

Fig. 1. An example of a compound digraph and its map. (a) Inclusion tree.
(b) Adjacency digraph. (c) Compound digraph obtained from (a) and (b). (d)
Map of the compound digraph drawn automatically and compound levels.

B. Readability Elements

Strictly speaking, readability of a map depends upon prob-
lems being studied and, more intrinsically, on the map’s
audience. Here, we consider common aspects of the read-
ability that leave little ambiguity in identifying its elements.
Readability elements are classified into drawing conventions
and drawing rules: the former consists of fundamental con-
straints necessarily attained in maps and the latter consists of
objectives satisfied as much as possible.

878 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 4 . JULY/AUGUST 1991

Fig. 2. A derived graph obtained from the compound digraph of Fig. 1(c).
(Edges marked with asterisks are derived edges.)

1) Drawing Conventions: We adopt the following conven-
tions for drawing a compound digraph.

Cl: Rectangle—A vertex is drawn as a rectangle with
horizontal and vertical sides.

C2: Inclusive—An inclusion edge (u,v) is drawn in such
a way that the rectangle corresponding to u includes
geometrically the rectangle corresponding to v. Rect-
angles without inclusion relations should be disjoint to
each other.

C3: Hierarchical—Vertices are laid out hierarchically
in terms of both Inclusive and adjacent relations
on parallel-nested horizontal bands called compound
levels (see Fig. 1(d)).

C4: Down-arrow—An adjacency edge (u,v) is drawn as
a downward arrow (without or with several bending
points) originating from the bottom side of the rectan-
gle corresponding to » and terminating on the top side
of the rectangle corresponding to v.

Our method is characterized as the hierarchical drawing
of compound digraphs though other conventions such as
positioning vertices on grids or 2-D free surfaces can be
possible. The reasons why we adopt hierarchical convention
are as follows.

1) It is difficult to readily grasp structures by human eyes
without some regularities; vertices are laid out and
edges are drawn in a certain regular or unified form.
Hierarchical layouts attain effective regularities.

2) The drawing algorithm can be made simpler than others.

It should be noted here that we can not always obtain a
hierarchical map for any given compound digraph due to the
cyclical nature of the digraph and hierarchical convention.
In such a case, certain adjacency edges are reversed and in
the final drawing step the original orientation of the reversed
edge is revived. For example, in Fig. 1(d), reversed edge
(g,b) is due to the cyclical nature of the compound digraph
(or “compound cycle”), while reversed edge (i,n) is due to
the Hierarchical convention. (However, these both cases may
result in the cyclical nature of the derived graph as seen in
Fig. 2)

2) Drawing Rules and Their Priority: Drawing rules are
classified into semantic and structural: the former comes from
the meanings of vertices and edges (e.g., relative importances,
user’s specifications), and the latter comes from structural
information itself [2]. In this paper we consider rules only for
the latter. We adopt the following structural rules for drawing
a compound digraph:

R1: Closeness—Vertices connected to each other are laid
out as closely as possible. There exist two types of
connections:

a: connections between the inside and outside ver-
tices of some rectangle;

b: connections among the inside vertices of some
rectangle.

R2: Line-crossing—The number of crossings among adja-
cency edges is reduced as much as possible.

R3: Line-rect-crossing—The number of crossings between
adjacency edges and rectangles is reduced as much as
possible.

R4: Line-straightness—One-span adjacency edges (or edges
between adjacent levels) are drawn as straight lines,
and long span adjacency edges are drawn as polygonal
lines where the number of bends is reduced and the
length of vertical part of the lines is increased as much
as possible.

R5: Balancing—Edges terminating on and originating from
a vertex are laid out in a balanced form.

The priority among these rules is specified as
R1>R2>R3>R4A>R5)

where Ri > Rj means that Ri has a higher priority than
Rj. This priority is empirically justified as follows. The first
three R1, R2, and R3 relate mainly to topological features
of maps while R4 and R5 are metrical features. The former
rules should be attained before the latter [2]. Among the former
rules, the length of the connections between inside and outside
vertices (Rla) is usually the longest and the length of the
connections between same levels (R3) usually the least, R1b
is realized simultaneously in attaining R2 and R3. Among the
latter rules, we consider that the traceability of edges that is
attained by their straightness (R4) is more important than the
Balancing (R5).

C. Features of Algorithm

The whole algorithm for drawing a compound digraph
consists of four steps similar to those of the algorithm for
drawing a digraph that have been developed by one of the
authors and his colleagues [9], [10].

Step I: Hierarchization—When a compound digraph is given,
we begin by checking the possibility of hierarchiza-
tion. If this not possible, we find reversed adjacency
edges to assign a compound level to each vertex and
obtain an assigned compound digraph. The problem
of finding the minimum feedback edge set is NP-
complete [20]. Consequently, we introduce heuristics
for determining reversed edges.

Step II: Normalization—An assigned compound digraph is
converted to a proper compound digraph by replacing
every nonproper adjacency edge with an appropriate
“linear” compound digraph. The time complexity of
this step is proportional to the total number of inclu-
sion and adjacency edges of the “linear” compound
digraphs produced.

SUGIYAMA AND MISUE: VISUALIZATION OF STRUCTURAL INFORMATION

Step IIl: Vertex Ordering—In a proper compound digraph,
reordering procedures are applied to local hierar-
chies defined for each vertex from rool to leaves.
In each local hierarchy, horizontal orders of vertices
are determined by permuting orders of vertices in
cach level of the local hierarchy so as to attain
Closeness, line-crossing and line-rect-crossing rules
as much as possible. The problem of minimizing
line-crossing is N P-complete even if the number of
levels of the local hierarchy is two [21]. The problem
of minimizing line-rect-crossing is equivalent to the
linear arrangement problem [20], as shown in Sec-
tion V-B-1), which is NP-complete. Therefore, we
develop heuristic methods.

Metrical Layout—Horizontal positions of vertices
are determined by attaining Closeness, line-
straightness, and Balancing rules as much as
possible. The orders of vertices determined in Step
Il are given as constraints to preserve the reduced
number of crossings. The problem to attain thesc
rules can be formalized as a quadratic programming
problem. We also develop a heuristic method called
priority layout method. A map is automatically drawn
where the original orientation of reversed edges is
revived, and the dummy vertices and edges are
deleted and the corresponding edges are regenerated.

Step 1V:

III. HierarcHizaTION (STEP I)

A. Compound Level Assignment

The drawing conventions C1-C4 require that rectangles
corresponding to vertices of a compound digraph are laid
out on parallel-nested horizontal bands so that Inclusive and
Down-arrow conventions are satisfied. As seen in Fig. 1(d), the
parallel-nested horizontal bands can be expressed by sequences
of positive integers. Extending the level assignment [19] of a
digraph, we consider the possibility of assigning a sequence
of positive integers called a compound level to each vertex of
a compound digraph D = (V, E, F).

Let ¥ = {1,2,3,...},5% = { sequences of i elements of
Y} and Z* = 21U T2 Ui U.... And suppose that the
lexicographical order is introduced for any pair of elements of
2*F; for example, (1,1,2) < (1,2) < (1,2,1) < (1,2,2).
Then, our problem is to find a mapping clev: V — %+
satisfying Inclusive and Down-arrow conventions.

Inclusive convention can be easily expressed as the follow-
ing conditions:;

1) For any vertex v € V, clev(v) € Tderlv), 3)
2) For any inclusion edge (v,w) € E,
clev(w) = append(clev(v), s),s € L. 4

where append is a function that append a component to a
sequence. Since the formalization of the Down-arrow conven-
tion is rather complicated, we need some explanation. For any
adjacency edge e = (v,w) € F, we can uniquely determine a
semipath from v to w in the inclusion tree D, as

pm(= v)’Pm—la"':-plwtﬂql,"'3qn—l~,qn(: ’LU) (5)

879

where t is the top vertex (or the vertex of minimal depth). This
means that the adjacency edge e originates from the rectangle
of v, goes out across p,,_1,...,p1 , passcs ¢, goes in across
q1..--,qn—1 and terminates on w. Down-arrow convention is
formulated by specifying an order among each pair (p;. ¢;) of
verlices of same depth for any adjacency edge (v, w) € F as
follows:

1) if dep(v) > dep(w) (or m > n),
clev(p;) < clev(g;), 1 =1,...,n~1,
clev(pn) < clev(w);

2) if dep(v) < dep(w) (or m < n),
clev(p;)clev(g:),i=1,..,m—1 (8)
clev(v) < clev(qm). 9

For example, in Fig. 1, the semipath corresponding to

adjacency edge (j,1) is j,e,b, f,] where b is the top vertex.
Since dep(j) = dep(l), we have clev(e) < clev(f) and
clev(j) < clev(l) from (8) and (9) respectively.

A compound digraph D has a compound level assignment if

and only if there exists a mapping clev : V — Z¥ satisfying

(3), (4), and (6)~9).

(6)
M

B. Hierarchization Algorithm

A given compound digraph can not always have a com-
pound level assignment due to the existence of cycles and
the definition of compound levels as described in Section
II-B-1) Consequently, we develop an algorithm to attain a
hierarchical layout of the compound digraph even when the
compound level assignment is not possible. We first derive
a new-typed compound digraph called derived graph, find
feedback adjacency edges and then reverse the orientation of
the edges.

1) Replacement of Adjacency Edges: Given a compound
digraph D = (V,E,F), in order to derive a new
graph representing requirements (6)~«(9) of the Down-arrow
convention, every adjacency edge of D is replaced with two
types of adjacency edges, — and =, which respectively
express relations < and < in (6)~9); i.e., for each adjacency

edge e = (v,w) € F, if m > n in (5), e is replaced with
Pn — wand p; = ¢;,t = 1,...,n — 1, and otherwise,
v — gm and p; = ¢;,¢ = 1,...,m — 1. (In the replacement,

if edges between the same pair of vertices are duplicated, then
reducing rules(&) suchas - = - & —, - = = & = and
= = = & = are applied to determine a type of a resulting
edge.) We call the graph derived through this replacement the
derived graph of D. Notice here that every adjacency edge in
the derived graph links two vertices whose depth is identical.
An adjacency edge e in the derived graph is called an original
edge if e € F, and a derived edge if ¢ ¢ F. For example,
the derived graph of the compound digraph presented in Fig.
1(c) is shown in Fig. 2 where edges marked with asterisk(x)
are derived edges.

2) Assignment of Compound Levels to Vertices: The derived
graph of D is used for assigning compound levels to all
the vertices of V. We denote the derived graph by DD =
(V,E,FD,type) where FD is a set of adjacency edges
derived from F and type: FD — {—,=}. If DD has cycles,

880 [EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 4 , JULY/AUGUST 1991

we nced procedure ResolveCycle below for resolving the
cycles to obtain a cycle-free graph DF = (VF, E, FF, type)

procedure ResolveCycle(DD DF);
begin
find all the strongly connected components

[22] C = in DD, = (V,FD); (DD, is the
adjacency digraph of DD} if (¢ # &) then
for (each (C,) do
if (all the edges of (; consist of type =)
then
replace C, into a single proxy vertex
else

eliminate appropriate edges called feed-
back edges(*) according to the following
rules: (1) edges of type = are eliminated
before edges of type — and (2) derived
edges are eliminated before original ones
among edges of type—;

denote new sets of vertices and adjacency edges

as VF and FF respectively

end;’
For example, in Fig. 2, there are two strongly connected
components C; and Cy with vertex sets {b,c} and {g,1}
respectively. In Cy edge (e, b) is eliminated according to the
rule (2) and in Cy edge (i, g) is eliminated by chance.

In DF we can put clev(root) = (1) without losing
generality. Then, we can assign compound levels to all the
vertices of V I by assigning them to children of vertices whose
levels are already assigned from root to leaves recursively in
DF. A digraph for a subset W C V in DF is denoted by
S = (W, H,type) where H = {(v,w) € FFlv,w € W}.
Then, invoking procedure CompLevAssign(DF, {root}, clev)
can assign clev(v) for each v € V F where function tail returns
the last component of a sequence of integers.

procedure CompLevAssign(DF. W, clev);
begin
M:= LevAssign(DF, W, clev);
for i:=1 to M do
begin
Z:= Ch({z € Witail(dlev(z)) = i});
if (Z £ @)
then CompLevAssign(DF, Z,clev)
end
end

function LevAssign (DF. Z, clev):
begin
constitute § = (W, H,type); partition W into its
blocks called levels [11,p. 407] Li,t=1,....n
in §;
for (each y € L;) do
begin
lev(y):=1;
clex(y):= append(clev(Pal(y)),lev(y))
end;
for i:=2 to n do for (each vertex y€ L;) do
begin ‘

integer;

! Since the problem of finding the minimum feedback edge set is N -
complete [20], [23], a heuristic method is used as follows. An edge is
eliminated in each component according to rules 1) and 2), and then strongly
connected components are found. [f there is no component, this procedure is
terminated, otherwise, repeated.

1.2

Fig. 3. An assigned compound digraph obtained from the
compound digraph of Fig. 1(c).

lev(y):= max{ly|(v,y) € Hyv € LyU...UL;_,} where

l, = lev(v) +1 if type(v,y) =—or 1, = lev(v)

iftype(v.y) ==; clev(y):= append(clev(Pa(y)).lev(y))

end;
LevAssign:=

end;
3) Reversing the Orientation of Adjacency Edges: If VF
includes proxy vertices, compound levels of all the vertices
of the component in DD corresponding to each proxy vertex
are set identical. Each adjacency edge (v, w) of the compound
digraph D = (V, E, F) is checked whether clev{v) < clev(w)
holds or not. If it does not hold, the orientation of the edge
is reversed. As the result, we have an assigned compound
digraph DA = (V, E, F A, clev). In the final drawing step the
original orientation of the edge is revived and drawn as an
upward arrow.
For example, in the compound digraph presented in Fig. 1(c),
the orientation of adjacency edges (g, b) and (7, n) are reversed
into (b, g) and (n,7) , because clev(g) = (1,2,2) > clev(b) =
(1,1) and clev(d) = (1,2,3) > clev(n) = (1,2,2,2)
respectively. Fig. 3 shows an assigned compound digraph
obtained.

max {lev(y)ly € W}

1V. Normarization (Step II)

In an assigned compound digraph DA = (V, E, F A, clev),
an adjacency edge (v,w) € FA is said to be proper if and
only .if clev(Pa(v)) = clev(Pa(w)) and tail(clev(v)) =
tail(clev(w)) — 1. An assigned compound digraph DA is
called a proper compound digraph if and only if every ad-
jacency edge in DA is proper.

Our normalization algorithm takes an assigned compound
digraph DA and converts it into a proper compound digraph
DP = (VP, EP, FP,clev). In the algorithm, every nonproper
adjacency edge is replaced with appropriate dummy vertices,
dummy inclusion edges and dummy proper adjacency edges.
Let (v,w) € FA be a nonproper adjacency edge, then in
general we can put clev(v) = (a, s1,...,8m) and clev(w) =
(a,t1,...,tn) where a is a subsequence common in both
sequences, s;’s and ¢;’s are positive integers, and s; < t;.
Notice that since the conversion is limited within such a vertex
of which compound level is «, we can neglect . Then, every
nonproper edge (v,w) in DA is replaced with the following
“linear” compound digraph:

Vosi+l)—o o -1)—- W (10)

SUGIYAMA AND MISUE: VISUALIZATION OF STRUCTURAL INFORMATION

n —

a.n = 2 2
(L :l b b
1.2
[IRWA)}]
(1,1.22)]
=
na T < [0] F‘“ ‘E
a2y i &
022 2 E] - EL E’:‘m
1.22.1) -
n.22.2] ﬂ L&"l"
.23 __J _‘
(a) (")) ")

Fig. 4. Conversion of nonproper adjacency edges.

and the equations at the bottom of the page. where (3)
is a dummy vertex whose compound levels is (8); —, |:
dummy adjacency edges; C, D: dummy inclusion edges; M;:
the maximum level or max{tail(clev(v))|clev(Pa(v)) =
(81,---,8m—k),v € V}. If 8, = My (or t, = 1), a virtual
bottom(top) level and a virtual dummy vertex on the level are
added (sce vertex r in Fig. 4 (b)).

In the assigned compound digraph presented in Fig. 3,
adjacency edges (b, g), (h, m), (m, ¢) and (n,) are not proper.
For example, (b,g) and (h,m) is replaced with the linear
compound digraphs shown Fig. 4 (a) and (b). The linear
compound digraphs are drawn actually as shown in Fig. 4
(2') and (b') respectively.

V. Vertex ORrpERING (StEP III)

A. Preliminaries

Let D = (V, E, F, clev) be a proper compound digraph and
W =V —{leaves} = {v1,...,vun}. And suppose that children
Ch(v) for each v € W can be partitioned into n(v) subsets
according to their compound levels, i.e.,

Ch(v) = Vi(x) U---UVi(0) U+ UVy(v) (1)

881

where Vi(v) = {u € Ch(v)|tail{clev(u)) = i} andV;(v) is
called the ith level. Then, we define an ordered compound
digraph by

D(o) = (V. E,F,clev, g) (12)

where o = (a(v1),...,0(vN)), 0(v) = (01(5), - - -, On(uy)(¥5))
and o;(v;) is an order among all the vertices of each V;(v;).
Fig. 5(a) shows a map of an ordered compound digraph where
o = (((u1,v,un,w2)), ((u2), (u3)), ((v1,v2), (v3,7a,v5)),
(('w3)’ (’lUs), (7"7))3 ((w4)7 (wﬁ)r (ws))» ((U4)), ((UG)7 (1}9))7
((v10)), ((v7,v8), (v11)))-

In an ordered compound digraph D(o), let A(v) be a set of
vertices (except v) whose compound level is equal to clev(v).
Then, we can partition A(v) into AZ(v) and A%(v) where
every vertex in AL(v) or AR(v) is leftward or rightward to v
in o respectively. For example, AL(v) = {u;} and AR(v) =
{w1,w2}. A local hierarchy for vertex v € V — {leaves} is
defined by

H(o(v)) = (Ch(v), F(v),n(v),a(v), A, p,w) (13)

where
1) Ch(v) is partitioned according to (11);
2) F(v) consists of the following two sets:
a) F<is a set of edges between different levels or
Fé = {(u,w) € Flu,w € Ch(v)},
F® is a set of edges between vertices of same level
or
F* = {(v,w)|(z,y) € F,z € De(u) — {u},y €
De(w) — {w},u,w € Ch(v)};
3) M w), p(w): the numbers of cdges between descendants
of Ch(v) and descendants of AY(w) or AR(w) for
w € Ch(v) respectively;
4) w(u,w): the multiple degree of edge (u,w) € F*.
Fig. 5(b) shows the local hierarchy for vertex v in the
ordered compound digraph shown in Fig. 5(a) where F?¢ =
{(v1,v3), (v1,v4), (v2, 1), (v2,v5) }; F* = {(v3,v5), (vs,va) };
w((vs,vs)) = 1 and w((vs,v4)) = 2.

b)

v
v
= !
{{ {1 sm+ 1) > oo (51, , M)} C (51,
C (1)

(t1) D (t1,1) = (£1,2) = -+ = (t1,t2) D -

) {(tlv"

fm=1
fm>1
rsm—l)'_’(sla"°)3m—l+1)—'“'_’(sl>"‘1M2)} C}
ifn=1

'vtn—lvl)_'"'_’(tl:"‘atn—lvtn_1)}”'}
| ifn>1

882 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 4 , JULY/AUGUST 1991

r
ul v wl w2
“J|E ;]

\\‘ o
u3 v3 v4 v5 w5 w6
v7
| lcal:
il 3/
calliis o el
X '
N radl
(2)
v1{0.0) v2{0.1)
v3(2,0
v4 (0.0) 2 v5(0.2)

1
®)

Fig. 5. (a) An ordered compound digraph and (b) a local hierarchy
for vertex v where v;(m, n) means A(v;) = m and p(v;) = n.

B. Vertex Ordering Algorithm

We consider reordering of vertices in D(o) to attain the
Closeness , Line-crossing and Line-rect-crossing rules. Let
S = (S(’Ul), - ,S(UN)),S('UJ') = Sl(’UJ') X ... X Sn(v,)(vj)
and S;(v;) be a set of all possible orders of o;(v;). Then, the
problem of attaining the rules is stated as

P: min{c,C(D(0)) + c2K(D(0)) + c3Q(D(0)) | o € S}
(14)
where
1) C(D(o)), K(D(0)), Q(D(c)): quantitative measures
for Closeness, Line-crossing and Line-rect-crossing
respectively;
2) c1, ¢, c3: weighting constants satisfying ¢y +ca+c3 = 1.
We decompose P into problems for local hierarchies of
D(o) such as

P(v;) : min{eiC(H(o(v;))) + c2K (H(o(v5)))

+caQ(H(a(v;))) | a(v;) € S(v;)},

ji=1,---,N. (15)
In order to solve P, problems P(v;)’s are solved one
by one from root to lieves recursively by invoking
VOrderGlobal(D(o), root), where the maximum depth of
D(c) is supposed to be more than one. Procedure
VOrderLocal is described in Section V-B-2).

procedure VOrderGlobal (D(o),v);
begin
if "Ch(v) # @) then
begin
VOrderLocal(H(a(v)));
{Problem P(v) is solved here.}
for (each w € Ch(v)) do

VOrderGlobal{D(s), w)

end
end;

Since problem P(v) is based upon a problem for a two-level
local hierarchies, we consider a procedure for a two-level local
hierarchy first, and then this procedure is extended to cases
for n-level local hierarchies.

1) Vertex Ordering in a Two-Level Local Hierarchy: Let
H(o) = (V,F,2,0,A,p,w) be a two-level local hierarchy
where V = ViUVs, F = FAUF* and o = (0}, 02). When we
putoy = (u1,...,Uk,...,up) and op = (W1y-- ., W, ..., W)
where p = |Vi| and ¢ = |V3|, then the problem to reorder
vertices in H(o) to attain the Closeness, Line-crossing and
Line-rect-crossing rules is stated as

Q: min{c;C(H(0)) + coK(H (o)) + c3Q(H(0)) | 71 € 51,
o3 € S} (16)

where quantitative measures for the drawing rules are ex-
pressed by
1) Closeness is the sum of differences between positions of
vertices with nonzero values of A and p and both ends
in each level; ie.,

C(H(0) = Y (kA(we) + (p— k + 1)p(w))

1<k<p

+) (eA(wa) + (g — @+ 1)p(wa))-

1<a<q

A7)

2) Line-crossing is the number of crossings among edges
of F4; ie.,

K(H(o)) =] {{(ux, wa), (w1, wp)} C F*

[1<k<l<pl<fB<a<q}]|. (18)

3) Line-rect-crossing is the total sum of lengths to which
each edge of F*® stretches; i.e.,

QAN = Y wl((we,u))lk—1|
(ur, ui)EF?
+ Y w((we,wp))la - Bl. (19)
(Wa,wg)EF?

Before describing how to solve the problem Q, we discuss
theoretical and heuristic aspects of three elementary problems
such as minimizations of C(H(0)), K(H (o)) and Q(H (o)),
and then show a heuristic method for solving Q.

1) Elementary Problems:

a) minimizing C(H(o)): This optimization can be
easily attained. For each vertex v € V, lett =
A(v) — p(v). Then if ¢ > 0 or t < 0, the vertex is
positioned at the left end or right end, respectively,
in 0y and o,. If there exist more than one such
vertices, then the larger [¢| is, the nearer to the
ends their positions are set. This method is called
splitting method.

b) minimizing K (H (o)): This optimization problem
is equivalent [9] to the minimum feedback edge set

SUGIYAMA AND MISUE: VISUALIZATION OF STRUCTURAL INFORMATION

problem whose complexity is N P-complete [21].
Consequently, we developed a heuristic method
called two-level barycentric(BC) method [9, p.
115]. This method repeats barycentric ordering of
vertices in the first and second levels in turn.

In Fig. 6(a), the upper barycenter of vertex f |
for example, is calculated as 2.0 = (1 + 2+ 3)/3
because it connects to the first, second and third
vertices (a, b, ¢) of the first level. Since the upper
barycenters of vertices of the second level in a are
not in an increasing order, the barycentric ordering
is applied to them and we have b. Similarly, the
barycentric ordering is applied to vertices of the
first level in b and we have c¢. As the result, the
number of crossings, K, is reduced from 5 to 0.

¢) minimizing Q(H (o)) For simplicity, the multi-
ple degree w of edges is ignored in (19). This
problem concerns only with one-level hierarchies
H(o1) and H(o2). The optimization on H(o1)
or H(o;) is equivalent to the linear arrange-
ment problem [20] whose complexity is N P-
complete since for each edge in H(o;) the number
of crossings between the edge and rectangles is
equal-to the length [20] of the edge minus one.
Therefore, a heuristic method called insertion BC
method is developed. Fig. 7 explains the inser-
tion BC method. One-level hierarcchy H(7),7 =
(g. k., 7, k) is given in (a). In (b), vertices w, x,y
and z are inserted and ordered according to their
barycenters into (w, z, y, 2). Then, the barycentric
ordering is applied to the vertices of the second
level and we have 7 = (,9,4,k,h) in (c); (d)
shows an optimum solution. The performance of
the insertion BC method has been evaluated by
choosing various types of one-level hierarchies
different in the number of vertices and the density
of edges. For each type of hierarchy, the mean
values of an initial value, the minimum solution,
the worst solution and a heuristic solution of the
total length of edges are obtained for each given
density of edges, i.e., 0.2, 0.4, 0.6 or 08. A
combinatorial (exhaustive) search is carried out
for each type of hierarchies whose numbers of
vertices are 4, 5 and 6, whereas samples of one
thousand initial orders of one hundred hierarchies
generated randomly are tested for hierarchies with
7 and 8 vertices. The mean values obtained for
the case of six vertices are shown in Table 1. We
have found that the mean of heuristic solutions is
less than 1.2 times of the mean of the minimum
soluions for all the types of hierarchies we have
tested.

2) Heuristic Algorithm for Solving Problem Q: Our heuris-

tic algorithm is characterized by two features: 1) we

883

K=5

e f g

40 20 3o (upper barycenters)
(a)

10 15 10 25 (lower barycenters)

K=1

f g e
20 a0 a0 & barycentric ordering
(b)

1010 15 25 . harycentric ordering

©)

Fig. 6. An application of barycentric method 1o a two-level hierarchy.

TABLE 1
RESULTS OF PERFORMANCE TESTS OF THE INSERTION
BC METHOD

Density Minumum Worst Initial Heuristic
02 3.00 9.00 7.00 3.00
04 8.05 19.97 14.00 9.53
0.6 14.94 26.89 21.00 17.65
0.8 23.20 31.73 28.00 26.62

linear arrangement problem. In procedure VOrder2Lev,
BOU(z) and BOL(¢) mean the barycentric ordering
according to upper and lower barycenters respectively
in the ith level; IDU(¢) and IDL(z) the insertion of
dummy vertices in the upper and lower level respectively
for edges among V;; and I the limit of iterations. As a
preprocess to attain rule R1, in H(o), vertices in each
level are reordered according to the splitting method
and the positions of vertices such that either A(v) or
p(v) is nonzero are fixed. Therefore, for simplicity, we
ignore such vertices and edges incident to the vertices
in VOrder2Lev.

procedure VOrder2Lev (H(o(v)));
begin
for i:= 1 to I do

begin
IDU(1l); BOU(l); BOU(2); IDU(2);
BOU(2); {down step}
IDL(2); BOL(2); BOL(1l); IDL(1);
BOL(1l) {up step}

adopt empirical priority R1 > R2 > R3 as presented in end
(1) , and 2) the barycentric method is applied to solve end;
simultancously both crossing reduction problem and Fig. 8 shows an application of vertex ordering to a two-level

884 IEEE TRANSACTIONS ON SYSTEMS, MAN. AND CYBERNETICS, VOL. 21, NO. 4 , JULY/AUGUST 1991

w

i

1
(b)

4
2 35

(]

y z
J k
4
2 3 3.5
w y z

re%

1 € 1 k h
1 2 2 35
(©

X
h
25
x

>

p
Z)
o

—

1)

—
=
=

(@
Fig. 7. An application of the insertion BC method.

local hierarchy where (a) and (b) show the preprocess.
2) Vertex Ordering in an n-Level Local Hierarchy: The al-
gorithm for an n-level local hierarchy is an extension of
the algorithm for a two-level local hierarchy. In procedure
VOrderLocall means a limit of iterations. As a preprocess, in
H(oy,...,0,) vertices in each level are reordered according
to the splitting method and the positions of vertices such
that either A(v) or p(v) is nonzero are fixed. Therefore, for
simplicity, we ignore such vertices and edges incident to the
vertices in VOrderLocal.
procedure VOrderLocal(H(o:,...
begin
for i:=1 to I do
begin
IDU(1); BOU(l); {start of down step} for
7J:=2 to n do
begin
BOU(J);
end;
IDL(n); BOL(n); {start of up step}
for j:=n-1 downto 1 do
begin
BOL(j);
end
end
end;

v On))i

IDU(j): BOU(J)

IDL(J);

BOL(j)

VI. MerricaL Layout (Step IV)

Here we consider how to determine a metrical layout of a

given ordered compound digraph and present its heuristic algo-
rithm. Our algorithm has been developed along the following
basic ideas.

1) A metrical layout consists of vertex positioning (i.e.,
determining horizontal and vertical positions, widths
and heights of rectangles), and edge routing (i.e., de-
termining metrical layouts of adjacency edges). In the
algorithm our effort is made mainly for the vertex
positioning, since we can determine the edge routing
readily from the vertex positioning as follows:

a) for any proper adjacency edge in an original
compound digraph, we can draw it as a straight
line without bending points, and

b) for any nonproper adjacency edge in the digraph,
we can obtain the edge routing directly from posi-
tions of rectangles by setting widths of rectangles
corresponding dummy or virtual vertices to be
zero (see Fig. 4(a’) and (b")).

2) The problem to determine a metrical layout of rectangles
is separable into two independent problems: Aorizontal
problem to calculate horizontal positions and widths
of rectangles, and vertical problem to calculate vertical
positions and heights of rectangles. The latter is an easy
task since it has no relation to the drawing rules while
the former is rather complicated since it relates to the
rules. In this section, we consider only the horizontal
problem.

A. Metrical Layout Algorithm

1) Preliminaries: When an ordered compound digraph
D(s) = (V,E, F,clev,s) is given, a metrical local hierarchy
for vertex v € V—{leaves} is defined by

HL(v) = (Ch(v), F*,n(v), a(v)) (20)

where notations are shown in (13). In a metrical local hierarchy
HL(v), upper metrical barycenter Bu(w) and lower metrical
barycenter Bl(w) for vertex w € Ch(v) are defined by

Y x(w) p/IFt(w)] if |Ft(w)] > 0

(v, w)EFt(w)
x(w)

Bu(w) =

otherwise

21)

> x(u) p/|Fo(w)| if |Fo(w)| > 0

(w,u)€Fo(w)

x(w)

Bu(w) =

otherwise

(22)
where Ft(w) C F? is a set of edges terminating on w
and Fo(w) C F? a set of edges originating from w.
|Ft(w)|and|Fo(w)| are called upper and lower connectivities
respectively.

2) A Heuristic Metrical Layout Algorithm: To obtain a read-
able map of D(o), procedure MetricalLayout have been
developed, where the maximum depth of D(o) is supposed
to be more than one. The procedure receives D(o) and widths

SUGIYAMA AND MISUE: VISUALIZATION OF STRUCTURAL INFORMATION

e(0.2) a d(1.2)

k 1.0 mog n

€) (b

125 3 3535 4 45

¢ di1.2)

B &

15 375 5 55

B85

€(0,2)

awcecx z

(®

Fig. 8. An application of vertex ordering 1o a two-level local hierarchy.

of leaves (6(v) for each v €{leaves}; the width should
be a positive even integer), and calculates global horizontal
positions (X (v) for each v € V') and widths of nonleaf vertices
(6(v) for each v € V—{leaves} where d; and d> means
metrical parameters. (See Fig. 9.) LayoutLocal calculates
local positions and widths of all the vertices of D(¢) and
LayoutGlobal their global positions. PRMethod is explained
in Section XI-B.

procedure MetricalLayout (D(b),X,8);
begin

LayoutLocal(D(o),ro0t,x,8);

X(root):= 6(root)/2; LayoutGlobal(D(s),root,x,X,5)
end;

procedure LayocutLocal (D(o),v,x,6);
begin
if (Ch(v) includes nonleaf vertices) then
for (each nonleaf vertex w € Ch(v)) do
LayoutLocal (D(s) w,X,6);
PRMethod (H L(v), x,§)
end;
procedure LayoutGlobal (D(¢),v,x,X,6);
begin
if (Ch(v) # @) then for (each w € Ch(v)) do
begin
x(®) 1= (Clv) = §(v)/2) + x(w);
LayoutGlobal (D(s),w,x,X,6)
end
end;

§(d)
b 143
5 (£) — S le)] d
f e
ko k4 n(f) ,n(e)
d1 d2 d1
j i d;
']
| : X
>
0 x (£) x{d) . xle)

local ordinate

Fig. 9. A map of metrical local hierarchy H L(b),
which is a part of the map presented in Fig. 1(d).

B. Metrical Layout Algorithm in a Metrical Local Hierarchy

In order to solve the problem to determine horizontal posi-
tions and widths of rectangles corresponding to all the vertices,
we solve problems formulated on metrical local hierarchies
one by one recursively with procedure LayoutLocal. We
have developed two types of methods to solve the problems;
quadratic programming (QP) method [8)] and priority layout

886 [EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 4 , JULY/AUGUST 1991

(PR) method. 1t is time-consuming to solve a QP method when
its size is large. Consequently, we have developed a heuristic
method (PR method) to reduce the computing cost. Here we
describe only the PR method.

The fundamental idea for this method is similar to that for
procedure VOrderLocal, i.e., “sequential” application of level
operations called improvements of horizontal positions. In the
case of VOrderLocal, barycenters of the vertices are used for
reordering vertices, while in this method the improvement of
positions is carried out according to the metrical barycenters
defined by (21) and (22) and “priority numbers” given to the
vertices. This method is an extension of the early method [6,
p. 121], [22].

Let o;(v) = (wi,...,wz,...,wrmv)l), i=1,...,n(v)
and we denote z}, = x(w}), 6, = 6(wi) and n = n(v)
for simplicity. Procedure PRMethod receives HL(v) and
calculates local coordinates and widths of the vertices of
HL(v) (e, x(w) and §(w) for w € Ch(v)). The procedure
is outlined in the following.

1) Initialization : Initial values of horizontal positions of
rectangles in each level are given by

k= 024l) o (a4) (48472,

2) Order of improved levels: Positions of rectangles in each
level are improved in the order of levels 2,3,...,n,n—
L...,2,1,t,t + 1,...,n where ¢ is a given integer
(2 £t < n—1). The improvements of the positions
of rectangles in levels 2,...,n and ¢,...,n are called
DOWN procedures, while those for levels n — 1,...,1
are called UP procedures.

3) Priority: Positions of rectangles in each level are deter-
mined one by one according to their priority numbers.
The highest priority number, an integer more than the
maximum of connectivities of all the vertices, is given
to dummy vertices to improve Line-straightness. Priority
numbers given to the other vertices are the connectivities
of the vertices to improve Balancing through the opera-
tions described in 4). Details of a sophisticated method
on how to assign the priority numbers are shown in [3,
Part II, pp. 93-105].

4) Improvement of Positions: The principle to improve the
position of a rectangle is to minimize the difference
between the present position of the rectangle and the
upper (or lower) metrical barycenter given by (21) (or
(22)), of the corresponding vertex in DOWN (or UP)
procedure under the following conditions.

a) The ordinate of the rectangle should be integer
and rectangles can not overlap with the other
rectangles in the same level.

b) The order of vertices of each level should be
preserved to attain Less-crossings.

c) Positions of rectangles whose priorities are less
than the priority of the improved vertex can be
displaced, where the distance displaced should be
as small as possible to attain Closeness.

=

jﬁﬂ
]
B
!

——

—

Fig. 10. A map of a compound digraph of 57 vertices,
39 adjacency edges and 56 inclusion edges.

5) After the UP/DOWN iterations have been terminated,
positions x(w)’s for each w € Ch(v) are rescaled by
x(w):= x(w) = (xo — d1) where xo =min{x(u) —
8(u)/2|u € Ch(v)} and width §(v) for v is obtained by
8(v):= max{x(w) + 6(w)/2|w € Ch(v)}—min{x(w) —
S(w)/2lw € Ch(v)} + 2d;.

Details of the algorithm are described in [8].

VII. APPLICATIONS

We have already developed an algorithm for drawing di-
graphs in a hierarchical form, implemented it in a drawing tool
called SKETCH and applied it to many different problems in
a variety of fields, which is summarized in [25]. In Sections
IMI-VI, we have described an algorithm to draw a more general
class of graphs; i.e., compound digraphs. The algorithm has
been implemented in SKETCH-II, written in C, on a Sun
workstation. The tool can provide automatic drawing facili-
ties including “straight line/curved line” options in drawing
vertices and adjacency edges. In order to demonstrate the
effectiveness of the heuristic drawing algorithm for compound
digraphs, we show its several applications.

Fig. 10 shows a map of a rather large compound digraph
of 57 vertices, 39 adjacency edges and 56 inclusion edges

SUGIYAMA AND MISUE: VISUALIZATION OF STRUCTURAL INFORMATION

@

without cycles. In this application, the heights and widths
of rectangles corresponding to leaves take various sizes that
are given according to metrical drawing convention Leaf-size.
Although the outermost rectangle corresponding to the root
vertex is drawn in the figure, we usually do not draw it.

A map of a compound digraph of 32 vertices, 20 adjacency
edges and 31 inclusion edges with cycles is shown in Fig.
11(a), which is drawn according to the drawing conventions
described in Section IT (Option0: rectangles for vertices and
bending lines for adjacency edges). In the map, downward

887

CY
Fig. 11. Variations of a map of a compound digraph. {a) Option0; (b) Optionl; (c) Option2. (d) Option3. (Dotted lines mean feadback edges.)

edges are drawn as solid lines and upward edges (i.e., reversed
edges) broken lines. Of the upward edges, the reversion of
the orientation of edge e; is carried out due to our definition
of hierarchization and edges ey and ez due to the existence
of cycles. Fig. 11 (b)«(d) show variations of the map by
options: (b) shows Optionl (vertices: rectangles; adjacency
edges: curves); (c) shows Option2 (vertices: closed curves;
adjacency edges: bending lines); (d) shows Option3 (vertices:
closed curves; adjacency edges: curves).

In producing curves, a simple interpolation is used; details

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 4 , JULY/AUGUST 1991

888

[13

'$28pa [RUONDANIPIQ Saul| Paysep pue $a8pa yoeqpesy ueaw ssul) panoq ‘(guondQ) seanrund puewnwos pue sdep -z Big

8T

ALVIATI 9V

[

[33
[23
153
c] for
[92]
|
E‘
TE| | €
0€) '2E

A=

i 6Z]

7

RE

~
~|

889

SUGIYAMA AND MISUE: VISUALIZATION OF STRUCTURAL INFORMATION

'$93pa [EUONDAIIPIq soul paysep pue saSpo Joeqpesj uedw saul paNoOQ ‘(zuondp) ssanrwuud puewwiod pue sdepy ‘g1 ‘Siyg

fe

—

890 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 4 , JULY/AUGUST 1991

TABLE I
FEATURES OF MAPS AND COMPUTATION TIMES
Fig. 10 Fig. 11(a) Fig. 12(a) Fig. 12(b) Fig. 12(c)
L. Features of Maps
a) The Number of Vertices 75 40 77 91 96
b) The Number of Feedback Edges 0 3 3 8 8
¢) The Number of Nonproper Edges 12 8 15 19 16
k=¥ |V,~(z:)|2 255 69 394 427 471
[1. Computation Times (sec)
1) Hierarchization 0.45 0.34 1.20 2.29 2.82
(finding feedback edges) (0.00) (0.25) 0.47) (1.23) (1.72)
2) Normalization 0.02 0.01 0.02 0.03 0.03
3) Vertex-Ordering 0.83 0.35 1.03 1.33 1.40
4) Metrical Layout 0.27 0.13 0.32 0.39 0.40
Total 1.57 0.83 2.57 4.04 4.65

of how to draw curves are seen in [7]. By observing the
variations of the map, we might say the followings.

1) In the cases of (b) and (c), mixing of straight and curved
lines is effective to distinguish vertices and edges.

2) In the cases of (c) and (d), the shapes of closed curves
expressing vertices reflect those of subgraphs included
by the closed curves. This might well affect the read-
ability of maps.

3) Maps (a) and (d) cause very different psychology; prob-
ably many people feel that the former is neat and rigid
while the latter is friendly and flexible. It might be
adequate that the former is utilized for representing
formal, static or final notions while the latter informal,
dynamic or temporary ones. We can select a more
appropriate type of map depending on applications.

Our extension of formalism into a compound digraph can
provide us more prominent and powerful facilities for repre-
senting and manipulating structural information in SKETCH-
II than SKETCH. One of the most remarkable facilities,
for example, is a “grouping” of vertices or “labeling” of
a subgraph that ordinarily means generalization, abstraction,
aggregation or integration of concepts assigned to the vertices
or elements of the subgraph. Another is the facility for
the refinement of concepts assigned to vertices, which can
be realized by “expanding” the vertices into more refined
structures.

The maps in Fig. 12 are simplified structures of C' syntax
[26, pp. 214-219], where

1) vertices labeled by numbers mean nonterminals in C
syntax;

2) vertices labeled by alphabets mean cycles (or recursive
parts in the syntax);

3) an adjacency edge 27—28, for example, means that
nonterminal 27 (this means “program”) is defined using
nonterminal 28 (this means “external-definition”).

These structures are chosen merely to explain the possibility
of a set of command primitives for reorganizing structures
within the extent of our graph formalism. Meanings of prim-
itives in Fig. 12 are as follows.

1) Expand: Construct a more refined structure within a

vertex (Vertices C and D are expanded in map (a), and
map (b) is obtained.);

2) Abbreviate: Eliminate all the structures that a vertex
includes (Subgraphs included by vertices C' and D are
eliminated in map (b), and map (a.1) is obtained.);

3) Release: Eliminate a vertex and release the structure that
the vertex includes (Vertices C and D are eliminated and
the structures they include are released in map (b), and
map (c) is obtained.) ;

4) Group: Create a vertex including the structure that is
constituted by some other vertices (Vertices 1, 2, 3, 20,
and 21 are grouped into a subgraph included by vertex
C and vertices 9, 13, 14, and 15 by vertex B in map (c)
and map(b) is obtained.).

The maps in Fig. 12 are drawn with Option0 whereas the
maps in Fig. 13 are drawn with Option2. In this case it seems
that maps with Options2 are more readable than those with
Option0 since we can distinguish vertices and edges more
easily in the former than the latter.

Features of maps presented in this section and CPU time
(s) needed for their computations on a Sun3/260 workstation
are shown in Table II, where PR method is used for metrical
layout. In Table II, (2) means the number of both original and
dummy vertices, and (d) an index to evaluate computation
times for vertex-ordering and metrical layout (see Fig. 14),
which is defined by

=YY VP

vEW ie(1,2,,n(v)}

(23)

where notations are defined in (13). The times for hierarchiza-
tion include those for finding feedback edges and therefore
they depend upon the number of feedback edges. If there is
no cycle, the computation time is rather small (see the case
of Fig. 10). The times for normalization are almost negligible.
The times for both vertex ordering and metrical layout are
nearly linear to the index % as seen in Fig. 14. The total times
for all the cases show that the algorithm achieves satisfactory
runtime performance.

VIII. ConNcLusioN

We have introduced a compound digraph as a diagram-
ming object by extending the class of digraphs, where both
Inclusive and adjacent relations defined on a set of vertices
are considered. Then, we have identified readability elements

SUGIYAMA AND MISUE: VISUALIZATION OF STRUCTURAL INFORMATION

O (3)+(4) o ©

a (3) only

COMPUTATION TIME(sec)
(3)+(4) in Table 2

0 T
0 100

T T T
200 300 400 S00
INDEX k

Fig. 14. Computations time for vertex-ordering (3)
and metrical layout (4).

to specify drawing conventions, rules and priority among the
rules for maps of the compound digraph, and have developed
algorithms to generate “readable” maps in a hierarchical form.
The whole algorithm consists of four steps; hierarchization,
normalization, vertex ordering and metrical layout.

1) In the step of hierarchization, we have introduced the
concept of compound levels and have developed an
algorithm to assign the compound levels to a compound
digraph even if the digraph includes compound cycles.

2) In the step of normalization, we have developed an algo-
rithm to normalize a given assigned compound digraph
into a proper one.

3) In the step of vertex ordering, we have given a heuris-
tic algorithm to attain drawing rules Closeness, Line-
crossing and Line-rect-crossing in a local hierarchy,
which is used as a subalgorithm in an algorithm to obtain
the improved orders of all the vertices in a given proper
assigned compound digraph.

4) In the step of metrical layout, we have developed
theoretical and heuristic algorithms to attain drawing
rules Closeness, Line-straightness and Balancing in a
metrical local hierarchy. Either one of these algorithms
is used as a subalgorithm in an algorithm to obtain the
improved horizontal positions of all the vertices in a
given ordered compound digraph.

Three applications have been shown to demonstrate the
cffectiveness of the algorithms developed, where in com-
parison with straight lines, utilization of curves has been
investigated to improve the readability of maps. A possible set
of primitives for progressively organizing structures within our
graph formalism has also been shown. The computation time
to calculate map layout for all the cases show the algorithm
achieves satisfactory runtime performance.

Both the extension of formalism and automatic drawing ca-
pabilities will attain an effective integration of human thinking
and machine production of maps. And in many of our intel-
lectual activities, they will be used as visual systems and/or
interfaces for databases, knowledge bases, expert systems, idea
processors, design systems, decision support systems and so
on. Consequently, it is desired to investigate how to use the
automatic drawing capabilities in dynamic thinking processes
under more general visual formalisms [18]. In this direction

891

the following studies are envisaged for future research [4]:

1) studies of drawing algorithms for compound graphs with
both directed and undirected adjacency edges,

2) analyses of dynamic readability elements for diagram-
matical thinking processes and developments of algo-
rithms attaining the elements, and

3) studies on how to display and edit Jarge maps on limited
spaces of bit-mapped displays.

ACKNOWLEDGMENT

The authors would like to acknowledge useful comments of
Dr. Mitsuhiko Toda of their institute. They are also grateful
to the referees for suggestions to improve the notation and
presentation of the paper.

REFERENCES

[1] P.Eades and R. Tamassia, “Algorithms for automatic graph drawing: An
annotated bibliography,” Dept. Comput. Sci., Brown Univ., Providence,
RI, Tech. Rep. no. CS-89-09, 1989.

[2] R. Tamassia, G. Di Battista, and C. Batini, “Automatic graph drawing
and readability of diagrams,” JEEE Trans. Syst., Man, Cybern., vol. 18,
pp. 61-79, 1988.

[3] K. Sugiyama, “A study on supporting diagrammatical thinking process:

Toward developing informatics for thinking enhancement,” Int. Institute

for Advanced Study of Social Inform. Sci., Fujitsu Ltd., Res. Summary

Rep. no. 24 (Part I), pp. 1-64, no. 25 (Part II), pp. 1-115, 1988, (in

Japanese).

K. Sugiyama and K. Misue, “ ‘Good’ graphic interfaces for ‘good’ idea

organizers,” in Proc. IFIP TC13, Third Int. Conf. Human—Compuler

Interaction, Cambridge, UK, Aug. 27-31, 1990, pp. 521-526.

[5] E. B. Messinger, “Automatic layout of large directed graphs,” Dept.

Comput. Science, Univ. Washington, Seattle, Tech. Rep. no. 87-07-08,

pp. 1-198, 1988.

K. Misue and K. Sugiyama, “Compound graphs as abstraction of card

systems and their hierarchical drawing,” Inform. Processing Soc., Japan,

Research Report 88-GC-32-2, 1988, (in Japanese).

[7] K. Misue and K. Sugiyama, “Freehand-like drawing of compound

graphs: A fundamental technique for computer aided abduction,” in

Proc. 37tk Conf. Inf. Proc. Soc. Jpn., 1988, pp. 1304-1305, (in J apanese).

K. Sugiyama and K. Misue, “Visualizing structural information: Hier-

archical drawing of a compound digraph,” Int. Institute for Advanced

Study Social Inform. Sci., Fujitsu Ltd., Res. Rep. no. 86, pp- 1-49,1989.

K. Sugiyama, S. Tagawa, and M. Toda, “Method for visual understand-

ing of hierarchical system structures,” JEEE Trans. Syst., Man, Cybern.,

vol. SMC-11, no. 2, pp. 109-125, 1981.

K. Sugiyama, “A cognitive approach for graph drawing,” Cybern. Syst.,

vol. 18, no. 6, pp. 447488, 1987.

J. N. Warfield, “Crossing theory and hierarchy mapping,” IEEE Trans.

Syst., Man, Cybern., vol. SMC-7, no. 7, pp. 505-523, 1977.

L. A. Rowe, M. Davis, E. Messinger, C. Meyer, C. Spirakis, and

A. Tuan, “A browser for directed graphs,” Software—Practice and

Experience, vol. 17, no. 1, pp. 61-76, 1987.

[13] E.R. Gansner, S. C. North, and K. P. Vo, “A program that draws directed

graphs,” Software-Practice and Experience, vol. 18, no. 11, 1047-1062,

1988.

C. Hartshorne and P. Weiss, Ed., collected papers of C. S, Peirce, vol.

II. Cambridge, MA: Harvard Univ. Press, 1978.

[15] J. Kawakita, “KJ method,” Chuockoron-sha, 1986 (in Japanese).

[16] N.V. Findler, Ed., Associative Networks. New York: Academic, 1979.

[17] J. F. Sowa, Conceptual Structures. New York: Addison-Wesley, 1984.

[18) D. Harel, “On visual formalisms,” Commun. ACM, vol. 31, no. 5, pp.

514-530, 1988.

F. Harary, Graph Theory. Reading, MA: Addison-Wesley, 1972,

S. Even, Graph Algorithms. Rockville, MD: Computer Science Press,

1979.

D. S. Johnson, “The NP-completeness column: An ongoing guide,” J.

Algorithms, vol. 3, pp. 89-99, 1982.

[22] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, 1974.

A. Lempel and I. Cederbaum, “Minimum feedback arc and vertex sets

of a directed graph,” IEEE Trans. Circuit Theory, vol. CT-13, no. 4, pp.

339-403, 1966.

[4

—

[6

—

—

(8

19

[10]
[11]
[12]

[14]

[19]
[20]

(21]

[23]

892 [EEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. 21, NO. 4 , JULY/AUGUST 1991

[24] K. Sugiyama, S. Tagawa, and M. Toda, “Effective representations of
hierarchical structures,” Int. Institute for Advanced Study of Social
Inform. Sci., Fujitsu Ltd., Res. Rep., no. 8, pp. 1-29, 1979.

[25] K. Sugiyama and M. Toda, “Structuring information for understanding
complex systems: A basis for decision making,” Fujitsu Sci. Tech. J.,
vol. 14, no. 2, pp. 144-164, 1985.

[26] B. W. Kemighan and D. M. Ritchie, The C Programming Language.
New York: Prentice-Hall, 1978.

Kozo Sugiyama (M’78-M'82) was born in Gifu,
Japan, on September 17, 1945. he received the B.S,,
M.S., and Ph.D. degrees in geophysics in 1969,
1971, and 1974, respectively, from the Nagoya
University, Nagaya, Japan.

Since April 1974, he has been with the Inter-
national Institute for Advanced Study of Social
Information Science, Fujitsu Ltd., Shizuoka, Japan,
where he has been doing research on systems analy-
sis of societal systems, structural modeling, decision
support, automatic graph drawing, graphic language,
and human-machine interface. He is presently the manager of the First
Research Laboratory there, From 1982 to 1983, he was research scholar at
the International Institute for Applied Systems Analysis, Laxenburg, Austria,
joining the Management and Technology Area. His current research interests
are in graphic interfaces, personal/group idea organizers, and conputer-aided
creativity.

Dr. Sugiyama is a member of the Society of Instrument and Control
Engineers of Japan and the Information Processing Society of Japan.

Kazuo Misue was born in Yamaguchi, Japan, on
January 17, 1962. He received the B.S. and M.S.
degrees in information science in 1984 and 1986,
respectively, from the Science University of Tokyo.

He has been with the International Institute for
Advanced Study of Social Information Science,
Fujitsu, Ltd., Shizuoka, Japan, since 1986. He has
been doing rescarch on diagrammatical abduction
support systems. His research interest include graph-
ical user interface, programming languages, and
formal semantics.

Mr. Misue is a member of the Information Processing Society of Japan,
and the Japan Society for Software Science and Technology.

